Proton irradiation (17–34 MeV at flux values ranging from 1011 to 1012 cm−2) was used to assess the influences of orientation-dependent linear defects in a current passing through ZnO nanorods. Compared with the pristine ZnO nanorods, there was a significant increase in the current passing through ZnO nanorods that were irradiated with a proton beam kept in parallel with the nanorod length. The current was gradually decreased with a corresponding increase in the angle of the proton beams relative to the nanorod length. Calculations using the density functional theory demonstrated a substantial reduction and a lack of influence on the bandgap due to linear defects along the respective c- and the a-axes of the ZnO nanorods. Linear defects likely play roles as channels or traps of conduction electrons or holes in wide-bandgap materials.

1.
W. E.
Vehse
,
W. A.
Sibley
,
F. J.
Keller
, and
Y.
Chen
,
Phys. Rev.
167
,
828
(
1968
).
2.
M.
Ishfaq
,
M.
Rizwan Khan
,
M. F.
Bhopal
,
F.
Nasim
,
A.
Ali
,
A. S.
Bhatti
,
I.
Ahmed
,
S.
Bhardwaj
, and
C.
Cepek
,
J. Appl. Phys.
115
,
174506
(
2014
).
3.
M. P.
Smylie
,
M.
Leroux
,
V.
Mishra
,
L.
Fang
,
1K. M.
Taddei
,
O.
Chmaissem
,
H.
Claus
,
A.
Kayani
,
A.
Snezhko
,
U.
Welp
, and
W.-K.
Kwok
,
Phys. Rev. B
93
,
115119
(
2016
).
4.
Y.-B.
Lee
,
C.-H.
Kwak
,
S.-Y.
Seo
,
S.-H.
Kim
,
C.-I.
Park
,
B.-H.
Kim
,
S.-H.
Park
,
Y.-D.
Choi
, and
S.-W.
Han
,
J. Korean Phys. Soc.
56
,
2050
(
2010
).
5.
S.
Narita
,
T.
Hitora
,
E.
Yamaguchi
,
Y.
Sakemi
,
M.
Itoh
,
H.
Yoshida
,
J.
Kasagi
, and
K.
Neichi
,
Nucl. Instrum. Methods Phys. Res. A
717
,
1
(
2013
).
6.
T.-Y.
Kim
,
K.
Cho
,
W.
Park
,
J.
Park
,
Y.
Song
,
S.
Hong
,
W.-K.
Hong
, and
T.
Lee
,
ACS Nano
8
,
2774
(
2014
).
7.
B.
Luo
,
J. W.
Johnson
,
F.
Ren
,
K. K.
Allums
,
C. R.
Abernathy
,
S. J.
Pearton
,
R.
Dwivedi
,
T. N.
Fogarty
,
R.
Wilkins
,
A. M.
Dabiran
,
A. M.
Wowchack
,
C. J.
Polley
,
P. P.
Chow
, and
A. G.
Baca
,
J. Electron. Mater.
31
,
437
(
2002
).
8.
S.-H.
Park
,
S.-H.
Kim
, and
S.-W.
Han
,
Nanotechnology
18
,
055608
(
2007
).
9.
C.-H.
Kwak
,
Y.-B.
Lee
,
S.-Y.
Seo
,
S.-H.
Kim
,
C.-I.
Park
,
B.-H.
Kim
,
D. W.
Jeong
,
J. J.
Kim
,
Z.
Jin
, and
S.-W.
Han
,
Curr. Appl. Phys.
11
,
S328
(
2011
).
10.
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
63
,
075205
(
2001
).
11.
W. I.
Park
and
G.-C.
Yi
,
Adv. Mater.
16
,
87
(
2004
).
12.
W.-K.
Hong
,
G.
Jo
,
J. I.
Sohn
,
W.
Park
,
M.
Choe
,
G.
Wang
,
Y. H.
Kahng
,
M. E.
Welland
, and
T.
Lee
,
ACS Nano
4
,
811
(
2010
).
13.
D. E.
Sayers
,
E. A.
Stern
, and
F. W.
Lytle
,
Phys. Rev. Lett.
27
,
1204
(
1971
).
14.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Norskov
,
Phys. Rev. B
59
,
7413
(
1999
).
15.
M. D.
Segall
,
P. J. D.
Lindan
,
M. J.
Probert
,
C. J.
Pickard
,
P. J.
Hasnip
,
S. J.
Clark
, and
M. C.
Payne
,
J. Phys.: Condens. Matter.
14
,
2717
(
2002
).
16.
R. W.
Godby
,
M.
Schluter
, and
L. J.
Sham
,
Phys. Rev. Lett.
56
,
2415
(
1986
).
17.
P.
Rinke
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
,
Phys. Rev. Lett.
102
,
026402
(
2009
).
You do not currently have access to this content.