A three-blade bluff body for wind energy harvesting is proposed and designed. The bluff body with a Y-type cross-section is formed by three rigid thin blades and fixed at the free end of a piezoelectric cantilever beam. Simulations and experiments confirmed that this three-blade structure can achieve much higher energy output than a square prism. The output voltages of horizontal harvesters with different half-angles between the two front blades of the bluff body were measured first. The half-angle dramatically affected the performance of the energy harvester. Half-angles between 60° and 80° are found to be the optimal values for generating a high output voltage. In addition, the performance of the harvester can be enhanced when the length ratio of the rear blade to the front blade is in the range of 4/3–5/3. Interestingly, the output voltage of the vertical three-blade harvester was higher than that of the horizontal one and the optimal half-angle in this case was also between 60° and 80°.

1.
F. K.
Shaikh
and
S.
Zeadally
,
Renewable Sustainable Energy Rev.
55
(
Suppl. C
),
1041
1054
(
2016
).
2.
S.
Nabavi
and
L.
Zhang
,
Sensors
16
(
7
),
1101
(
2016
).
3.
A.
Abdelkefi
,
Int. J. Eng. Sci.
100
,
112
135
(
2016
).
4.
D.
Li
,
Y.
Wu
,
A.
Da Ronch
, and
J.
Xiang
,
Prog. Aerosp. Sci.
86
,
28
62
(
2016
).
5.
J.
Hyung-Jo
and
L.
Seung-Woo
,
Smart Mater. Struct.
20
(
5
),
055022
(
2011
).
6.
D.
Zhu
,
S. P.
Beeby
,
M. J.
Tudor
,
N. M.
White
, and
N. R.
Harris
,
IEEE Sens. J.
13
(
2
),
691
700
(
2013
).
7.
Y.
Yang
,
L.
Zhao
, and
L.
Tang
,
Appl. Phys. Lett.
102
(
6
),
064105
(
2013
).
8.
R. A.
Steven
and
A. S.
Henry
,
Smart Mater. Struct.
16
(
3
),
R1
(
2007
).
9.
Y.
Yang
,
G.
Zhu
,
H.
Zhang
,
J.
Chen
,
X.
Zhong
,
Z.-H.
Lin
,
Y.
Su
,
P.
Bai
,
X.
Wen
, and
Z. L.
Wang
,
ACS Nano
7
(
10
),
9461
9468
(
2013
).
10.
J.
Bae
,
J.
Lee
,
S.
Kim
,
J.
Ha
,
B.-S.
Lee
,
Y.
Park
,
C.
Choong
,
J.-B.
Kim
,
Z. L.
Wang
,
H.-Y.
Kim
,
J.-J.
Park
, and
U. I.
Chung
,
Nat. Commun.
5
,
4929
(
2014
).
11.
S.
Olivieri
,
G.
Boccalero
,
A.
Mazzino
, and
C.
Boragno
,
Renewable Energy
105
,
530
538
(
2017
).
12.
S.
Orrego
,
K.
Shoele
,
A.
Ruas
,
K.
Doran
,
B.
Caggiano
,
R.
Mittal
, and
S. H.
Kang
,
Appl. Energy
194
,
212
222
(
2017
).
13.
L. B.
Zhang
,
A.
Abdelkefi
,
H. L.
Dai
,
R.
Naseer
, and
L.
Wang
,
J. Sound Vib.
408
,
210
219
(
2017
).
14.
H. L.
Dai
,
A.
Abdelkefi
,
Y.
Yang
, and
L.
Wang
,
Appl. Phys. Lett.
108
(
5
),
053902
(
2016
).
15.
G. R. S.
Assi
,
P. W.
Bearman
, and
J. R.
Meneghini
,
J. Fluid Mech.
661
,
365
401
(
2010
).
16.
A. H.
Alhadidi
and
M. F.
Daqaq
,
Appl. Phys. Lett.
109
(
3
),
033904
(
2016
).
17.
L.
Tang
,
L.
Zhao
,
Y.
Yang
, and
E.
Lefeuvre
,
IEEE/ASME Trans. Mechatronics
20
(
2
),
834
844
(
2015
).
18.
A.
Bibo
,
A. H.
Alhadidi
, and
M. F.
Daqaq
,
J. Appl. Phys.
117
(
4
),
045103
(
2015
).
19.
A.
Barrero-Gil
,
G.
Alonso
, and
A.
Sanz-Andres
,
J. Sound Vib.
329
(
14
),
2873
2883
(
2010
).
20.
A.
Abdelkefi
,
J. M.
Scanlon
,
E.
McDowell
, and
M. R.
Hajj
,
Appl. Phys. Lett.
103
(
3
),
033903
(
2013
).
21.
G.
Hu
,
K. T.
Tse
,
K. C. S.
Kwok
,
J.
Song
, and
Y.
Lyu
,
Appl. Phys. Lett.
109
(
19
),
193902
(
2016
).
22.
A.
Bibo
and
M. F.
Daqaq
,
Appl. Phys. Lett.
104
(
2
),
023901
(
2014
).
23.
J.
Song
,
G.
Hu
,
K. T.
Tse
,
S. W.
Li
, and
K. C. S.
Kwok
,
Appl. Phys. Lett.
111
(
22
),
223903
(
2017
).
24.
G. V.
Parkinson
and
J. D.
Smith
,
Q. J. Mech. Appl. Math.
17
(
2
),
225
239
(
1964
).
25.
G. R. S.
Assi
and
P. W.
Bearman
,
J. Fluids Struct.
54
(
Suppl. C
),
263
280
(
2015
).
You do not currently have access to this content.