Gas embolotherapy (GE) consists in the occlusion of tumor blood vessels using gas emboli induced by acoustic droplet vaporization (ADV), to create tumor starvation and localized drug delivery. Therefore, the occlusion and rupture of capillary bifurcation due to ADV was investigated in an ex vivo rat mesentery model using a confocal acousto-optical high-speed microscope system. Following ADV bubble formation, coalescence, and translational movement, the growing bubbles lodged in and then occluded two different capillary bifurcations. Capillary rupture was induced at the bubble lodging area, immediately followed by gas extravasation and bubble dislodging. Before and after bubble lodgment/occlusion, a local microvessel invagination was observed due to the interactions between ADV bubbles and the microvessel itself, indicating a contribution to the capillary rupture. Understanding the transient dynamics of ADV bubble, the bubble–microvessel interaction and the consequent mechanical bio-effects in GE is of the paramount importance for developing and applying this approach in clinical practice.

1.
J. L.
Bull
,
Crit. Rev. Biomed. Eng.
33
(
4
),
299
(
2005
).
2.
O. D.
Kripfgans
,
J. B.
Fowlkes
,
D. L.
Miller
,
O. P.
Eldevik
, and
P. L.
Carson
,
Ultrasound Med. Biol.
26
,
1177
(
2000
).
3.
O. D.
Kripfgans
,
C. M.
Orifici
,
P. L.
Carson
,
K. A.
Ives
,
O. P.
Eldevik
, and
J. B.
Fowlkes
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
7
),
1101
(
2005
).
4.
A.
Qamar
,
Z. Z.
Wong
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Appl. Phys. Lett.
96
(
14
),
143702
(
2010
).
5.
O. D.
Kripfgans
,
M. L.
Fabiilli
,
P. L.
Carson
, and
J. B.
Fowlkes
,
J. Acoust. Soc. Am.
116
(
1
),
272
(
2004
).
6.
S. T.
Kang
,
Y. L.
Huang
, and
C. K.
Yeh
,
Ultrasound Med. Biol.
40
(
3
),
551
(
2014
).
7.
S. T.
Kang
,
Y. C.
Lin
, and
C. K.
Yeh
,
Ultrason. Sonochem.
21
(
5
),
1866
(
2014
).
8.
S.
Samuel
,
A.
Duprey
,
M. L.
Fabiilli
,
J. L.
Bull
, and
J. B.
Fowlkes
,
Microcirculation
19
(
6
),
501
(
2012
).
9.
Z. W.
Zheng
,
O. D.
Kripfgans
,
A.
Qamar
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Soft Matter
7
(
8
),
4009
(
2011
).
10.
S.
Robinson
,
D. S.
Li
,
F. J.
Brian
, and
J. L.
Bull
,
Ultrasound Med. Biol.
41
(
12
),
3241
(
2015
).
11.
Y. J.
Ho
,
Y. C.
Chang
, and
C. K.
Yeh
,
Theranostics
6
(
3
),
392
(
2016
).
12.
Y. J.
Ho
and
C. K.
Yeh
,
Acta Biomater.
49
,
472
(
2017
).
13.
A. J.
Calderón
,
S. H.
Yun
,
D.
Huh
,
N.
Futai
,
S.
Takayama
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Appl. Phys. Lett.
89
(
24
),
244103
(
2006
).
14.
M.
Wan
,
Y.
Feng
, and
G. T.
Haar
,
Cavitation in Biomedicine
(
Springer
,
The Netherlands
,
2015
), p.
438
.
15.
H.
Chen
,
A. A.
Brayman
,
W.
Kreider
,
M. R.
Bailey
, and
T. J.
Matula
,
Ultrasound Med. Biol.
37
(
12
),
2139
(
2011
).
16.
H.
Chen
,
W.
Kreider
,
A. A.
Brayman
,
M. R.
Bailey
, and
T. J.
Matula
,
Phys. Rev. Lett.
106
(
3
),
034301
(
2011
).
17.
P.
Zhang
and
T.
Porter
,
Ultrasound Med. Biol.
36
(
11
),
1856
(
2010
).
18.
Y.
Qiao
,
Y.
Zong
,
H.
Yin
,
N.
Chang
,
Z.
Li
, and
M.
Wan
,
Ultrason. Sonochem.
21
(
5
),
1745
(
2014
).
19.
D. S.
Li
,
O. D.
Kripfgans
,
M. L.
Fabiilli
,
J. B.
Fowlkes
, and
J. L.
Bull
,
Appl. Phys. Lett.
104
(
6
),
063703
(
2014
).
20.
A.
Ishijima
,
J.
Tanaka
,
T.
Azuma
,
K.
Minamihata
,
S.
Yamaguchi
,
E.
Kobayashi
,
T.
Nagamune
, and
I.
Sakuma
,
Ultrasonics
69
,
97
(
2016
).
21.
P.
Dayton
,
A.
Klibanov
,
G.
Brandenburger
, and
K.
Ferrara
,
Ultrasound Med. Biol.
25
(
8
),
1195
(
1999
).
22.
H.
Chen
,
A. A.
Brayman
,
A. P.
Evan
, and
T. J.
Matula
,
Ultrasound Med. Biol.
38
(
12
),
2151
(
2012
).
23.
H.
Chen
,
A. A.
Brayman
, and
T. J.
Matula
,
Appl. Phys. Lett.
101
(
16
),
163704
(
2012
).
24.
H.
Chen
,
A. A.
Brayman
,
M. R.
Bailey
, and
T. J.
Matula
,
Urol. Res.
38
(
4
),
321
(
2010
).
25.
N.
Hosseinkhah
,
H.
Chen
,
T.
Matula
,
P.
Burns
, and
K.
Hynynen
,
J. Acoust. Soc. Am.
134
(
3
),
1875
(
2013
).

Supplementary Material

You do not currently have access to this content.