Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

1.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
2.
D.
Yin
,
W.
Liu
,
X.
Li
,
L.
Geng
,
X.
Wang
, and
P.
Huai
, “
Mono-bi-monolayer graphene junction introduced quantum transport channels
,”
Appl. Phys. Lett.
103
,
173519
(
2013
).
3.
B. Z.
Rameshti
,
M.
Zareyan
, and
A. G.
Moghaddam
, “
Supercurrent reversal in Josephson junctions based on bilayer graphene flakes
,”
Phys. Rev. B
92
,
085403
(
2015
).
4.
M.
Berahman
,
M.
Sanaee
, and
R.
Ghayour
, “
A theoretical investigation on the transport properties of overlapped graphene nanoribbons
,”
Carbon
75
,
411
419
(
2014
).
5.
A.
Rajabpour
and
S. M.
Vaez Allaei
, “
Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study
,”
Appl. Phys. Lett.
101
,
053115
(
2012
).
6.
J.
Tian
,
Y.
Jiang
,
I.
Childres
,
H.
Cao
,
J.
Hu
, and
Y. P.
Chen
, “
Quantum Hall effect in monolayer-bilayer graphene planar junctions
,”
Phys. Rev. B
88
,
125410
(
2013
).
7.
H.
Huang
,
W.
Chen
,
S.
Chen
, and
A. T. S.
Wee
, “
Bottom-up growth of epitaxial graphene on 6H-SiC(0001)
,”
ACS Nano
2
,
2513
2518
(
2008
).
8.
T.
Nakanishi
,
M.
Koshino
, and
T.
Ando
, “
Transmission through a boundary between monolayer and bilayer graphene
,”
Phys. Rev. B
82
,
125428
(
2010
).
9.
M.
Koshino
,
T.
Nakanishi
, and
T.
Ando
, “
Interface Landau levels in graphene monolayer-bilayer junctions
,”
Phys. Rev. B
82
,
205436
(
2010
).
10.
S.-H.
Ji
,
J. B.
Hannon
,
R. M.
Tromp
,
V.
Perebeinos
,
J.
Tersoff
, and
F. M.
Ross
, “
Atomic-scale transport in epitaxial graphene
,”
Nat. Mater.
11
,
114
119
(
2011
).
11.
F.
Giannazzo
,
I.
Deretzis
,
A.
La Magna
,
F.
Roccaforte
, and
R.
Yakimova
, “
Electronic transport at monolayer-bilayer junctions in epitaxial graphene on sic
,”
Phys. Rev. B
86
,
235422
(
2012
).
12.
K. W.
Clark
,
X.-G.
Zhang
,
G.
Gu
,
J.
Park
,
G.
He
,
R. M.
Feenstra
, and
A.-P.
Li
, “
Energy gap induced by Friedel oscillations manifested as transport asymmetry at monolayer-bilayer graphene boundaries
,”
Phys. Rev. X
4
,
011021
(
2014
).
13.
M.
An
,
Q.
Song
,
X.
Yu
,
H.
Meng
,
D.
Ma
,
R.
Li
,
Z.
Jin
,
B.
Huang
, and
N.
Yang
, “
Generalized two-temperature model for coupled phonons in nanosized graphene
,”
Nano Lett.
17
,
5805
5810
(
2017
).
14.
G. L.
Pollack
, “
Kapitza resistance
,”
Rev. Mod. Phys.
41
,
48
81
(
1969
).
15.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
,
605
668
(
1989
).
16.
A.
Rajabpour
and
S.
Volz
, “
Thermal boundary resistance from mode energy relaxation times: Case study of argon-like crystals by molecular dynamics
,”
J. Appl. Phys.
108
,
094324
(
2010
).
17.
A.
Rajabpour
,
S. M. V.
Allaei
, and
F.
Kowsary
, “
Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study
,”
Appl. Phys. Lett.
99
,
051917
(
2011
).
18.
K.
Gordiz
,
S. M. V.
Allaei
, and
F.
Kowsary
, “
Thermal rectification in multi-walled carbon nanotubes: A molecular dynamics study
,”
Appl. Phys. Lett.
99
,
251901
(
2011
).
19.
A.
Rajabpour
and
S.
Volz
, “
Universal interfacial thermal resistance at high frequencies
,”
Phys. Rev. B
90
,
195444
(
2014
).
20.
Y.
Chalopin
,
A.
Rajabpour
,
H.
Han
,
Y.
Ni
, and
S.
Volz
, “
Equilibrium molecular dynamics simulations on interfacial phonon transport
,”
Annu. Rev. Heat Transfer
17
,
147
176
(
2014
).
21.
B.
Liu
,
J. A.
Baimova
,
C. D.
Reddy
,
S. V.
Dmitriev
,
W. K.
Law
,
X. Q.
Feng
, and
K.
Zhou
, “
Interface thermal conductance and rectification in hybrid graphene/silicene monolayer
,”
Carbon
79
,
236
244
(
2014
).
22.
J.
Tersoff
, “
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
39
,
5566
5568
(
1989
).
23.
L.
Lindsay
and
D. A.
Broido
, “
Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
,”
Phys. Rev. B
81
,
205441
(
2010
).
24.
L. A.
Girifalco
,
M.
Hodak
, and
R. S.
Lee
, “
Carbon nanotubes buckyballs, ropes, and a universal graphitic potential
,”
Phys. Rev. B
62
,
13104
13110
(
2000
).
25.
B.
Mortazavi
,
A.
Rajabpour
,
S.
Ahzi
,
Y.
Rémond
, and
S. M. V.
Allaei
, “
Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study
,”
Solid State Commun.
152
,
261
264
(
2012
).
26.
X.
Xu
,
L. F. C.
Pereira
,
Y.
Wang
,
J.
Wu
,
K.
Zhang
,
X.
Zhao
,
S.
Bae
,
C.
Tinh Bui
,
R.
Xie
,
J. T. L.
Thong
,
B. H.
Hong
,
K. P.
Loh
,
D.
Donadio
,
B.
Li
, and
B.
Özyilmaz
, “
Length-dependent thermal conductivity in suspended single-layer graphene
,”
Nat. Commun.
5
,
3689
(
2014
).
27.
S.
Nose
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
28.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
29.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nose-hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
30.
Z.
Fan
,
W.
Chen
,
V.
Vierimaa
, and
A.
Harju
, “
Efficient molecular dynamics simulations with many-body potentials on graphics processing units
,”
Comput. Phys. Commun.
218
,
10
16
(
2017
).
31.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
, “
Comparison of atomic-level simulation methods for computing thermal conductivity
,”
Phys. Rev. B
65
,
144306
(
2002
).
32.
S. C.
Wang
,
X. G.
Liang
,
X. H.
Xu
, and
T.
Ohara
, “
Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations
,”
J. Appl. Phys.
105
,
014316
(
2009
).
33.
A.
Bagri
,
S.-P.
Kim
,
R. S.
Ruoff
, and
V. B.
Shenoy
, “
Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations
,”
Nano Lett.
11
,
3917
3921
(
2011
).
34.
W.-R.
Zhong
,
M.-P.
Zhang
,
B.-Q.
Ai
, and
D.-Q.
Zheng
, “
Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study
,”
Appl. Phys. Lett.
98
,
113107
(
2011
).
35.
Z.
Wei
,
Z.
Ni
,
K.
Bi
,
M.
Chen
, and
Y.
Chen
, “
In-plane lattice thermal conductivities of multilayer graphene films
,”
Carbon
49
,
2653
2658
(
2011
).
36.
B.
Mortazavi
and
T.
Rabczuk
, “
Multiscale modeling of heat conduction in graphene laminates
,”
Carbon
85
,
1
7
(
2015
).
37.
Y.
Ni
,
Y.
Chalopin
, and
S.
Volz
, “
Significant thickness dependence of the thermal resistance between few-layer graphenes
,”
Appl. Phys. Lett.
103
,
061906
(
2013
).
38.
Z.
Fan
,
L. F. C.
Pereira
,
P.
Hirvonen
,
M. M.
Ervasti
,
K. R.
Elder
,
D.
Donadio
,
T.
Ala-Nissila
, and
A.
Harju
, “
Thermal conductivity decomposition in two-dimensional materials: Application to graphene
,”
Phys. Rev. B
95
,
144309
(
2017
).
You do not currently have access to this content.