Cadmium sulfide (CdS) nanoparticles were anchored in a three-dimensional (3D) graphite cage for high performance supercapacitors. Significantly, the graphite cage intensified the construction of electroactive materials and facilitated the transfer of ions. As a result, the 3D-CdS/graphite cage revealed a great thermal stability and high specific capacitance (511 F/g at 5 A/g). Additionally, the 3D-CdS/graphite//reduced graphene oxide (rGO) asymmetric supercapacitor revealed a high energy density (30.4 Wh/kg at a power density of 800 W/kg) and long-term cycling stability (90.1% retention after 5000 cycles at 10 A/g) for practical applications.
References
1.
V.
Valtchev
and L.
Tosheva
, Chem. Rev.
113
, 6734
–6760
(2013
).2.
K.
Shen
, L.
Zhang
, X.
Chen
, L.
Liu
, D.
Zhang
, Y.
Han
, J.
Chen
, J.
Long
, R.
Luque
, Y.
Li
, and B.
Chen
, Science
359
, 206
–210
(2018
).3.
R.
Genc
, M. O.
Alas
, E.
Harputlu
, S.
Repp
, N.
Kremer
, M.
Castellano
, S. G.
Colak
, K.
Ocakoglu
, and E.
Erdem
, Sci. Rep.
7
, 11222
(2017
).4.
S.
Repp
, E.
Harputlu
, S.
Gurgen
, M.
Castellano
, N.
Kremer
, F. M.
Emen
, S.
Weber
, K.
Ocakoglu
, and E.
Erdem
, Nanoscale
10
, 1877
–1884
(2018
).5.
C. G.
Liu
, M.
Liu
, F.
Li
, and H. M.
Cheng
, Appl. Phys. Lett.
92
, 143108
(2008
).6.
C.
Boissiere
, D.
Grosso
, A.
Chaumonnot
, L.
Nicole
, and C.
Sanchez
, Adv. Mater.
23
, 599
–623
(2011
).7.
R. J.
White
, R.
Luque
, V. L.
Budarin
, J. H.
Clark
, and D. J.
Macquarrie
, Chem. Soc. Rev.
38
, 481
–494
(2009
).8.
Q.
Wei
, F.
Xiong
, S.
Tan
, L.
Huang
, E. H.
Lan
, B.
Dunn
, and L.
Mai
, Adv. Mater.
29
, 1602300
(2017
).9.
Y.
Zhao
, W.
Kang
, L.
Li
, G.
Yan
, X.
Wang
, X.
Zhuang
, and B.
Cheng
, Electrochim. Acta
207
, 257
–265
(2016
).10.
Z. R.
Tang
, B.
Han
, C.
Han
, and Y. J.
Xu
, J. Mater. Chem. A
5
, 2387
–2410
(2017
).11.
S. G.
Kumar
and K. S. R. K.
Rao
, Energy Environ. Sci.
7
, 45
–102
(2014
).12.
H.-I
Kim
, O. S.
Kwon
, S.
Kim
, W.
Choi
, and J.-H.
Kim
, Energy Environ. Sci.
9
, 1063
–1073
(2016
).13.
S.
Han
, D.
Wu
, S.
Li
, F.
Zhang
, and X.
Feng
, Adv. Mater.
26
, 849
–864
(2014
).14.
X.
He
, H.
Yu
, L.
Fan
, M.
Yu
, and M.
Zheng
, Mater. Lett.
195
, 31
–33
(2017
).15.
L.
Liu
, C.
Zhu
, M.
Fan
, C.
Chen
, Y.
Huang
, Q.
Hao
, J.
Yang
, H.
Wang
, and D.
Sun
, Nanoscale
7
, 13619
–13628
(2015
).16.
V.
Dzhagan
, A. G.
Milekhin
, M. Y.
Valakh
, S.
Pedetti
, M.
Tessier
, B.
Dubertret
, and D. R. T.
Zahn
, Nanoscale
8
, 17204
–17212
(2016
).17.
L.
Ma
, M.
Liu
, D.
Jing
, and L.
Guo
, J. Mater. Chem. A
3
, 5701
–5707
(2015
).18.
R.
Zappacosta
, M.
Di Giulio
, V.
Ettorre
, D.
Bosco
, C.
Hadad
, G.
Siani
, S.
Di Bartolomeo
, A.
Cataldi
, L.
Cellini
, and A.
Fontana
, J. Mater. Chem. B
3
, 6520
–6527
(2015
).19.
L.
Cheng
, K.
Yun
, A.
Lucero
, J.
Huang
, X.
Meng
, G.
Lian
, H.-S.
Nam
, R. M.
Wallace
, M.
Kim
, A.
Venugopal
, L.
Colombo
, and J.
Kim
, J. Mater. Chem. C
3
, 5192
–5198
(2015
).20.
P.
Xu
, J.
Liu
, P.
Yan
, C.
Miao
, K.
Ye
, K.
Cheng
, J.
Yin
, D.
Cao
, K.
Li
, and G.
Wang
, J. Mater. Chem. A
4
, 4920
–4928
(2016
).21.
X.
Zhang
, X.
Ge
, S.
Sun
, Y.
Qu
, W.
Chi
, C.
Chen
, and W.
Lu
, CrystEngComm
18
, 1090
–1095
(2016
).22.
X.
Wang
, B.
Shi
, Y.
Fang
, F.
Rong
, F.
Huang
, R.
Que
, and M.
Shao
, J. Mater. Chem. A
5
, 7165
–7172
(2017
).23.
N.
Nair
, S.
Majumder
, and B. R.
Sankapal
, Chem. Phys. Lett.
659
, 105
–111
(2016
).24.
Y.
Gogotsi
and R. M.
Penner
, ACS Nano
12
, 2081
–2083
(2018
).25.
V.
Augustyn
, P.
Simon
, and B.
Dunn
, Energy Environ. Sci.
7
, 1597
–1614
(2014
).26.
J.
Tang
, Y.
Ge
, J.
Shen
, and M.
Ye
, Chem. Commun.
52
, 1509
–1512
(2016
).27.
L.
Chen
, Y.
Zuo
, Y.
Zhang
, and Y.
Gao
, Int. J. Electrochem. Sci.
13
, 1343
–1354
(2018
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.