In this work, we present theoretical analyses of the acoustic radiation force acting on non-spherical particles, as well as experimental demonstration of particle trapping assisted by the artificially engineered acoustic field of the phononic crystal plate. The capsule-shaped particles, a kind of common non-spherical-shaped particles, in practical cases, are chosen as study objects. The dependence of the acoustic radiation force on different parameters such as the frequency, position, and orientation of a capsule-shaped particle is evaluated, and the analysis shows the orientation angle also has a great influence, which is quite different from the spherical particles. Due to the extraordinary resonant transmission of the phononic crystal plate, the periodically distributed acoustic field is obtained to realize trapping on capsule-shaped particle(s). This method could be envisaged to pave a way of delivering drugs or cells and small fibers in biology and medicine.

1.
J. R.
Wu
,
J. Acoust. Soc. Am.
89
,
2140
(
1991
).
2.
J. P.
Leaoneto
and
G. T.
Silva
,
Ultrasonics
71
,
1
(
2016
).
3.
J.
Awatani
,
J. Acoust. Soc. Am.
27
,
282
(
1955
).
5.
F. B.
Wijaya
and
K.-M.
Lim
,
Acta Acust. Acust.
101
,
531
(
2015
).
6.
A.
Eller
,
J. Acoust. Soc. Am.
43
,
170
(
1968
).
7.
W. J.
Xie
and
B.
Wei
,
Phys. Rev. E
70
,
046611
(
2004
).
8.
J. R.
Wu
,
G. H.
Du
,
S. S.
Work
, and
D. M.
Warshaw
,
J. Acoust. Soc. Am.
87
,
581
(
1990
).
9.
F. G.
Mitri
,
Eur. Phys. J. B
44
,
71
(
2005
).
10.
P.
Glynne-Jones
,
P. P.
Mishra
,
R. J.
Boltryk
, and
M.
Hill
,
J. Acoust. Soc. Am.
133
,
1885
(
2013
).
11.
J.
Greenhall
,
F.
Guevara Vasquez
, and
B.
Raeymaekers
,
Appl. Phys. Lett.
105
,
144105
(
2014
).
13.
G. T.
Silva
,
T. P.
Lobo
, and
F. G.
Mitri
,
Europhys. Lett.
97
,
54003
(
2012
).
14.
F. G.
Mitri
,
T. P.
Lobo
, and
G. T.
Silva
,
Phys. Rev. E
85
,
026602
(
2012
).
15.
G. T.
Silva
,
A. L.
Baggio
,
J. H.
Lopes
, and
F. G.
Mitri
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
576
(
2015
).
16.
G.
Bahl
,
J.
Zehnpfennig
,
M.
Tomes
, and
T.
Carmon
,
Nat. Commun.
2
,
403
(
2011
).
17.
P.
Zhang
,
T.
Li
,
J.
Zhu
,
X.
Zhu
,
S.
Yang
,
Y.
Wang
,
X.
Yin
, and
X.
Zhang
,
Nat. Commun.
5
,
4316
(
2014
).
18.
H. M.
Hertz
,
J. Appl. Phys.
78
,
4845
(
1995
).
19.
D.
Foresti
and
D.
Poulikakos
,
Phys. Rev. Lett.
112
,
024301
(
2014
).
20.
C. E. M.
Demore
,
P. M.
Dahl
,
Z.
Yang
,
P.
Glynnejones
,
A.
Melzer
,
S.
Cochran
,
M.
Macdonald
, and
G. C.
Spalding
,
Phys. Rev. Lett.
112
,
174302
(
2014
).
21.
C. R. P.
Courtney
,
C. E. M.
Demore
,
H.
Wu
,
A.
Grinenko
,
P. D.
Wilcox
,
S.
Cochran
, and
B. W.
Drinkwater
,
Appl. Phys. Lett.
104
,
154103
(
2014
).
22.
D.
Baresch
,
J.
Thomas
, and
R.
Marchiano
,
Phys. Rev. Lett.
116
,
024301
(
2016
).
23.
A.
Marzo
,
A.
Ghobrial
,
L.
Cox
,
M.
Caleap
,
A.
Croxford
, and
B. W.
Drinkwater
,
Appl. Phys. Lett.
110
,
014102
(
2017
).
24.
J.
Shi
,
D.
Ahmed
,
X.
Mao
,
S. S.
Lin
,
A.
Lawit
, and
T. J.
Huang
,
Lab Chip
9
,
2890
(
2009
).
25.
C. Y.
Lee
,
J. S.
Jeong
,
J. Y.
Hwang
,
J. W.
Lee
, and
K. K.
Shung
,
Appl. Phys. Lett.
104
,
244107
(
2014
).
26.
G.
Destgeer
,
B. H.
Ha
,
J.
Park
, and
H. J.
Sung
,
Anal. Chem.
88
,
3976
(
2016
).
27.
C.
Yoon
,
B. J.
Kang
,
C.
Lee
,
H. H.
Kim
, and
K. K.
Shung
,
Appl. Phys. Lett.
105
,
214103
(
2014
).
28.
A.
Grinenko
,
C. K.
Ong
,
C. R. P.
Courtney
,
P. D.
Wilcox
, and
B. W.
Drinkwater
,
Appl. Phys. Lett.
101
,
233501
(
2012
).
29.
F.
Zheng
,
Y.
Li
,
H. S.
Hsu
,
C. G.
Liu
,
C. T.
Chiu
,
C. Y.
Lee
,
H. H.
Kim
, and
K. K.
Shung
,
Appl. Phys. Lett.
101
,
214104
(
2012
).
30.
F. Y.
Cai
,
Z. J.
He
,
Z. Y.
Liu
,
L.
Meng
,
X.
Cheng
, and
H. R.
Zheng
,
Appl. Phys. Lett.
99
,
253505
(
2011
).
31.
T.
Wang
,
M. Z.
Ke
,
S. J.
Xu
,
J. H.
Feng
,
C. Y.
Qiu
, and
Z. Y.
Liu
,
Appl. Phys. Lett.
106
,
163504
(
2015
).
32.
F.
Li
,
F. Y.
Cai
,
Z. Y.
Liu
,
L.
Meng
,
M.
Qian
,
C.
Wang
,
Q.
Cheng
,
M. L.
Qian
,
X.
Liu
,
J. R.
Wu
,
J. Y.
Li
, and
H. R.
Zheng
,
Phys. Rev. Appl.
1
,
051001
(
2014
).
33.
X. X.
Xia
,
Q.
Yang
,
H. Y.
Li
,
M. Z.
Ke
,
S. S.
Peng
,
C. Y.
Qiu
, and
Z. Y.
Liu
,
Appl. Phys. Lett.
111
,
031903
(
2017
).
34.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
,
Nature
537
,
518
(
2016
).
35.
L. V.
King
,
Proc. R. Soc. London, Ser. A
153
,
1
(
1935
).
36.
J.
Awatani
,
Memoirs of the Institute of Scientific and Industrial Research
(
Osaka University
,
1952
), Vol.
9
, p.
24
.
37.
38.
J.
Awatani
,
Memoirs of the Institute of Scientific and Industrial Research
(
Osaka University
,
1953
), Vol.
10
, p.
51
.
39.
F. G.
Mitri
,
Europhys. Lett.
112
,
34002
(
2015
).
41.
M. Z.
Ke
,
Z. J.
He
,
S. S.
Peng
,
Z. Y.
Liu
,
J.
Shi
,
W. J.
Wen
, and
P.
Sheng
,
Phys. Rev. Lett.
99
,
044301
(
2007
).
42.
R.
Hao
,
C. Y.
Qiu
,
Y. T.
Ye
,
C. H.
Li
,
H.
Jia
,
M. Z.
Ke
, and
Z. Y.
Liu
,
Appl. Phys. Lett.
101
,
021910
(
2012
).
44.
T.
Schwarz
,
G.
Petit-Pierre
, and
J.
Dual
,
J. Acoust. Soc. Am.
133
,
1260
(
2013
).

Supplementary Material

You do not currently have access to this content.