We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

1.
G.
Shirane
,
E.
Sawaguchi
, and
Y.
Takagi
,
Phys. Rev.
84
,
476
(
1951
).
3.
K. M.
Rabe
,
Functional Metal Oxides: New Science and Novel Applications
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2013
), pp.
221
244
.
4.
P.
Tolédano
and
M.
Guennou
,
Phys. Rev. B
94
,
014107
(
2016
).
5.
J. W.
Bennett
,
K. F.
Garrity
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
110
,
017603
(
2013
).
6.
J.
Müller
,
T. S.
Boscke
,
U.
Schroeder
,
S.
Müller
,
D.
Brauhaus
,
U.
Bottger
,
L.
Frey
, and
T.
Mikolajick
,
Nano Lett.
12
,
4318
(
2012
).
7.
T.
Böscke
,
S.
Teichert
,
D.
Bräuhaus
,
J.
Müller
,
U.
Schröder
,
U.
Böttger
, and
T.
Mikolajick
,
Appl. Phys. Lett.
99
,
112904
(
2011
).
8.
S. E.
Reyes-Lillo
,
K. F.
Garrity
, and
K. M.
Rabe
,
Phys. Rev. B
90
,
140103
(
2014
).
9.
M.
Pešić
,
M.
Hoffmann
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schroeder
,
Adv. Funct. Mater.
26
,
7486
(
2016
).
10.
M.
Pešić
,
S.
Knebel
,
M.
Hoffmann
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schroeder
, in
2016 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2016
), pp.
11
16
.
11.
M.
Pešić
,
T.
Li
,
V. D.
Lecce
,
M.
Hoffmann
,
M.
Materano
,
C.
Richter
,
B.
Max
,
S.
Slesazeck
,
U.
Schroeder
,
L.
Larcher
 et al,
J. Electron Devices Soc.
(published online,
2018
).
12.
M.
Pešić
,
U.
Schroeder
,
S.
Slesazeck
, and
T.
Mikolajick
,
IEEE Trans. Devices Mater. Reliab.
(published online,
2018
).
13.
M.
Lee
,
Y.-T.
Wei
,
K.-Y.
Chu
,
J.-J.
Huang
,
C.-W.
Chen
,
C.-C.
Cheng
,
M.-J.
Chen
,
H.-Y.
Lee
,
Y.-S.
Chen
,
L.-H.
Lee
 et al,
IEEE Electron Device Lett.
36
,
294
(
2015
).
14.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K.
Do Kim
, and
C. S.
Hwang
,
Nano Energy
12
,
131
(
2015
).
15.
M. H.
Park
,
T.
Schenk
,
M.
Hoffmann
,
S.
Knebel
,
J.
Gärtner
,
T.
Mikolajick
, and
U.
Schroeder
,
Nano Energy
36
,
381
(
2017
).
16.
P. D.
Lomenzo
,
C.-C.
Chung
,
C.
Zhou
,
J. L.
Jones
, and
T.
Nishida
,
Appl. Phys. Lett.
110
,
232904
(
2017
).
17.
S.
Mueller
,
J.
Mueller
,
A.
Singh
,
S.
Riedel
,
J.
Sundqvist
,
U.
Schroeder
, and
T.
Mikolajick
,
Adv. Funct. Mater.
22
,
2412
(
2012
).
18.
S.
Starschich
and
U.
Boettger
,
J. Mater. Chem. C
5
,
333
(
2017
).
19.
L.
Xu
,
T.
Nishimura
,
S.
Shibayama
,
T.
Yajima
,
S.
Migita
, and
A.
Toriumi
,
Appl. Phys. Express
9
,
091501
(
2016
).
20.
U.
Schroeder
,
C.
Richter
,
M. H.
Park
,
T.
Schenk
,
M.
Pešić
,
M.
Hoffmann
,
F. P.
Fengler
,
D.
Pohl
,
B.
Rellinghaus
,
C.
Zhou
 et al,
Inorg. Chem.
57
,
2752
(
2018
).
21.
M.
Hoffmann
,
U.
Schroeder
,
T.
Schenk
,
T.
Shimizu
,
H.
Funakubo
,
O.
Sakata
,
D.
Pohl
,
M.
Drescher
,
C.
Adelmann
,
R.
Materlik
 et al,
J. Appl. Phys.
118
,
072006
(
2015
).
22.
L.
Xu
,
T.
Nishimura
,
S.
Shibayama
,
T.
Yajima
,
S.
Migita
, and
A.
Toriumi
,
J. Appl. Phys.
122
,
124104
(
2017
).
23.
J.
Müller
,
U.
Schröder
,
T.
Böscke
,
I.
Müller
,
U.
Böttger
,
L.
Wilde
,
J.
Sundqvist
,
M.
Lemberger
,
P.
Kücher
,
T.
Mikolajick
 et al,
J. Appl. Phys.
110
,
114113
(
2011
).
24.
M.
Hoffmann
,
T.
Schenk
,
M.
Pešić
,
U.
Schroeder
, and
T.
Mikolajick
,
Appl. Phys. Lett.
111
,
182902
(
2017
).
25.
R.
Meyer
,
R.
Waser
,
K.
Prume
,
T.
Schmitz
, and
S.
Tiedke
,
Appl. Phys. Lett.
86
,
142907
(
2005
).
26.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
 et al,
Adv. Funct. Mater.
26
,
4601
(
2016
).
27.
E. D.
Grimley
,
T.
Schenk
,
T.
Mikolajick
,
U.
Schroeder
, and
J. M.
LeBeau
,
Adv. Mater. Interfaces
5
,
1701258
(
2018
).
28.
Z.
Matěj
,
A.
Kadlecová
,
M.
Janeček
,
L.
Matějová
,
M.
Dopita
, and
R.
Kužel
,
Powder Diffr.
29
,
S35
(
2014
).
29.
R. D.
Shannon
,
Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
32
,
751
(
1976
).
30.
R.
Batra
,
T. D.
Huan
,
G. A.
Rossetti
, Jr.
, and
R.
Ramprasad
,
Chem. Mater.
29
,
9102
(
2017
).
31.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
,
J. Appl. Phys.
117
,
134109
(
2015
).
32.
M.
Hyuk Park
,
H.
Joon Kim
,
Y.
Jin Kim
,
W.
Lee
,
T.
Moon
, and
C.
Seong Hwang
,
Appl. Phys. Lett.
102
,
242905
(
2013
).
33.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
W.
Lee
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
,
Appl. Phys. Lett.
105
,
072902
(
2014
).
34.
P. D.
Lomenzo
,
P.
Zhao
,
Q.
Takmeel
,
S.
Moghaddam
,
T.
Nishida
,
M.
Nelson
,
C. M.
Fancher
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
 et al,
J. Vac. Sci. Technol. B
32
,
03D123
(
2014
).
35.
T.
Shimizu
,
T.
Yokouchi
,
T.
Shiraishi
,
T.
Oikawa
,
P. S. R.
Krishnan
, and
H.
Funakubo
,
Jpn. J. Appl. Phys., Part 1
53
,
09PA04
(
2014
).
36.
S.
Starschich
,
D.
Griesche
,
T.
Schneller
,
R.
Waser
, and
U.
Böttger
,
Appl. Phys. Lett.
104
,
202903
(
2014
).
37.
M.
Hyuk Park
,
H.
Joon Kim
,
Y.
Jin Kim
,
W.
Lee
,
H.
Kyeom Kim
, and
C.
Seong Hwang
,
Appl. Phys. Lett.
102
,
112914
(
2013
).
38.
G.
Karbasian
,
R.
dos Reis
,
A. K.
Yadav
,
A. J.
Tan
,
C.
Hu
, and
S.
Salahuddin
,
Appl. Phys. Lett.
111
,
022907
(
2017
).
39.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
W.
Jeon
,
T.
Moon
, and
C. S.
Hwang
,
Phys. Status Solidi (RRL)
8
,
532
(
2014
).

Supplementary Material

You do not currently have access to this content.