Spin-laser structures such as spin-polarized vertical-cavity surface-emitting lasers are semiconductor devices in which the radiative recombination processes involving spin-polarized carriers result in an emission of circularly polarized photons. Nevertheless, additional linear in-plane anisotropies in the cavity, e.g., interfacial and surface anisotropies, generally lead to preferential linearly polarized laser emission and to possible coupling between modes. We present Mueller matrix ellipsometric study of non-intentionally doped InGaAs/GaAsP laser structures devoted for optical pumping operations in the spectral range from 0.73 to 6.4 eV in order to disentangle surface and quantum wells contributions to the linear optical birefringence of the structures. The measurement of full 4 × 4 Mueller matrix for multiple angles of incidence and in-plane azimuthal angles in combination with proper parametrization of optical functions has been used for extraction of optical permittivity tensor components along [110] and [110] crystal axis of surface strained layers and quantum wells grown on [001]-substrate. Such spectral dependence of optical tensor elements is crucial for modeling of spin-laser eigenmodes, resonance conditions, and also for understanding of sources of structure anisotropies.

1.
F.
Koyama
,
J. Lightwave Technol.
24
,
4502
(
2006
).
2.
K.
Iga
,
Jpn. J. Appl. Phys.
47
,
1
(
2008
).
3.
H.
Li
and
K.
Iga
,
Vertical-Cavity Surface-Emitting Laser Devices
, Springer Series in Photonics (
Springer
,
Berlin, Heidelberg
,
2013
).
4.
K. D.
Choquette
and
R. E.
Leibenguth
,
IEEE Photonics Technol. Lett.
6
,
40
(
1994
).
5.
F.
Meier
and
B.
Zakharchenia
,
Optical Orientation
, Modern Problems in Condensed Matter Sciences (
North-Holland
,
1984
).
6.
H.
Dery
,
Y.
Song
,
P.
Li
, and
I.
Zutic
,
Appl. Phys. Lett.
99
,
082502
(
2011
).
7.
N. C.
Gerhardt
,
M. Y.
Li
,
H.
Jähme
,
H.
Höpfner
,
T.
Ackemann
, and
M. R.
Hofmann
,
Appl. Phys. Lett.
99
,
151107
(
2011
).
8.
H.
Ando
,
T.
Sogawa
, and
H.
Gotoh
,
Appl. Phys. Lett.
73
,
566
(
1998
).
9.
M.
Holub
,
J.
Shin
,
D.
Saha
, and
P.
Bhattacharya
,
Phys. Rev. Lett.
98
,
146603
(
2007
).
10.
J.
Rudolph
,
S.
Döhrmann
,
D.
Hägele
,
M.
Oestreich
, and
W.
Stolz
,
Appl. Phys. Lett.
87
,
241117
(
2005
).
11.
M.
Holub
and
B. T.
Jonker
,
Phys. Rev. B
83
,
125309
(
2011
).
12.
M.
San Miguel
,
Q.
Feng
, and
J. V.
Moloney
,
Phys. Rev. A
52
,
1728
(
1995
).
13.
T.
Fördös
,
H.
Jaffrès
,
K.
Postava
,
M.
Seghilani
,
A.
Garnache
,
J.
Pištora
, and
H.-J.
Drouhin
,
Phys. Rev. A
96
,
043828
(
2017
).
14.
J.-L.
Yu
,
Y.-H.
Chen
,
C.-G.
Tang
,
C.
Jiang
, and
X.-L.
Ye
,
Nanoscale Res. Lett.
6
,
210
(
2011
).
15.
O.
Krebs
and
P.
Voisin
,
Phys. Rev. Lett.
77
,
1829
(
1996
).
16.
S.
Cortez
,
O.
Krebs
, and
P.
Voisin
,
Eur. Phys. J. B
21
,
241
(
2001
).
17.
L. F.
Lastras-Martínez
,
R. E.
Balderas-Navarro
,
A.
Lastras-Martínez
, and
K.
Hingerl
,
Semicond. Sci. Technol.
19
,
R35
(
2004
).
18.
A.
Laurain
,
M.
Myara
,
G.
Beaudoin
,
I.
Sagnes
, and
A.
Garnache
,
Opt. Express
18
,
14627
(
2010
).
19.
J.
Frougier
,
G.
Baili
,
M.
Alouini
,
I.
Sagnes
,
H.
Jaffrs̀
,
A.
Garnache
,
C.
Deranlot
,
D.
Dolfi
, and
J.-M.
George
,
Appl. Phys. Lett.
103
,
252402
(
2013
).
20.
J.
Frougier
,
G.
Baili
,
I.
Sagnes
,
D.
Dolfi
,
J.-M.
George
, and
M.
Alouini
,
Opt. Express
23
,
9573
(
2015
).
21.
T.
Pusch
,
M. B.
Sanayeh
,
M.
Lindemann
,
N. C.
Gerhardt
,
M. R.
Hofmann
, and
R.
Michalzik
,
Proc. SPIE
9892
,
989222
(
2016
).
22.
M.
Holub
and
P.
Bhattacharya
,
J. Phys. D: Appl. Phys.
40
,
R179
(
2007
).
23.
A.
Joly
,
G.
Baili
,
M.
Alouini
,
J.-M.
George
,
I.
Sagnes
,
G.
Pillet
, and
D.
Dolfi
,
Opt. Lett.
42
,
651
(
2017
).
24.
T.
Fördös
,
K.
Postava
,
H.
Jaffrès
, and
J.
Pištora
,
J. Opt.
16
,
065008
(
2014
).
25.
L. F.
Lastras-Martínez
,
D.
Rönnow
,
P. V.
Santos
,
M.
Cardona
, and
K.
Eberl
,
Phys. Rev. B
64
,
245303
(
2001
).
26.
E. A.
Cerda-Méndez
,
R. E.
Balderas-Navarro
,
A.
Lastras-Martínez
,
L. F.
Lastras-Martínez
,
A.
Garnache
,
L.
Cerutti
, and
A.
Jouillé
,
J. Appl. Phys.
98
,
066107
(
2005
).
27.
R. W.
Collins
and
J.
Koh
,
J. Opt. Soc. Am. A
16
,
1997
(
1999
).
28.
R.
Azzam
and
N.
Bashara
,
Ellipsometry and Polarized Light
, North-Holland Personal Library (
North-Holland Publishing Co.
,
1977
).
29.
M.
Losurdo
and
K.
Hingerl
,
Ellipsometry at the Nanoscale
(
Springer
,
Berlin, Heidelberg
,
2013
).
30.
M.
Seghilani
, Ph.D. thesis,
University of Montpellier
,
2016
.
31.
Handbook of Optical Constants of Solids I, II, III
, edited by
E. D.
Palik
(
Academic Press
,
1991
).
32.
M.
Bass
,
C.
DeCusatis
,
J.
Enoch
,
V.
Lakshminarayanan
,
G.
Li
,
C.
MacDonald
,
V.
Mahajan
, and
E.
Van Stryland
,
Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (Set)
, Handbook of Optics (
McGraw-Hill Education
,
2009
).
33.
S.
Zollner
,
Appl. Phys. Lett.
63
,
2523
(
1993
).
34.
T.
Fördös
,
K.
Postava
,
H.
Jaffrès
,
J.
Pištora
, and
H.-J.
Drouhin
, “
Mueller matrix ellipsometric study of Bragg mirror structures with local optical birefringence
” (unpublished) (
2018
).
35.
B.
Saleh
and
M.
Teich
,
Fundamentals of Photonics
, Wiley Series in Pure and Applied Optics (
Wiley
,
2007
).
36.
G. E.
Jellison
, Jr.
and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
).
37.
B.
Johs
,
C.
Herzinger
,
J.
Dinan
,
A.
Cornfeld
, and
J.
Benson
,
Thin Solid Films
313-314
,
137
(
1998
).
38.
D. W.
Marquardt
,
SIAM J. Appl. Math.
11
,
431
(
1963
).
39.
S.
Adachi
,
Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles
(
Springer
,
US
,
2012
).
40.
P.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors: Physics and Materials Properties
(
Springer
,
Berlin, Heidelberg
,
2013
).
You do not currently have access to this content.