An optical fiber sensing and signal demodulation technology based on Mach-Zehnder interferometer (MZI) and orbital angular momentum (OAM) beam was proposed in this work. One path of the MZI containing only single mode fiber (SMF) emits Gaussian beam, and the other path which contains a segment of two-mode fiber (TMF) generates OAM beam. The OAM beam was generated by offset splicing a segment of TMF with SMF, and then rotating the TMF by using a customized fiber rotator. The interference between the Gaussian beam and the OAM beam generates spiral interference pattern, which can rotate with the change of phase difference between these two beams. A segment of SMF in the Gaussian beam path was used as a sensing fiber, which was placed on a thermostat. When the temperature changes, the phase difference between the Gaussian beam and the OAM beam was changed owing to the thermo-optic effect and thermal expansion effect of the sensing fiber, resulting in the rotation of spiral interference pattern. An optical phase difference demodulation method based on spiral interference pattern feature extraction technology was proposed to demodulate optical phase difference between these two beams. Experimental result shows that the sensing system has a linear temperature measurement sensitivity of 12.67 rad/°C. The temperature measurement resolution is 0.0000122 °C in theory and about 0.005 °C achieved in experiment.

1.
N.
Bozinovic
,
Y.
Yue
,
Y.
Ren
,
M.
Tur
,
P.
Kristensen
,
H.
Huang
,
A. E.
Willner
, and
S.
Ramachandran
,
Science
340
,
1545
1548
(
2013
).
2.
S. X.
Yu
,
L.
Li
,
G. M.
Shi
,
C.
Zhu
, and
Y.
Shi
,
Appl. Phys. Lett.
108
,
241901
(
2016
).
3.
S. X.
Yu
,
L.
Li
,
G.
Shi
,
C.
Zhu
,
X. X.
Zhou
, and
Y.
Shi
,
Appl. Phys. Lett.
108
,
121903
(
2016
).
4.
K.
Toyoda
,
K.
Miyamoto
,
N.
Aoki
,
R.
Mortia
, and
T.
Omatsu
,
Nano Lett.
12
,
3645
3649
(
2012
).
5.
N. B.
Simpson
,
K.
Dholakia
,
L.
Allen
, and
M. J.
Padgett
,
Opt. Lett.
22
,
52
54
(
1997
).
6.
K.
Liu
,
Y. Q.
Cheng
,
X.
Li
,
Y. L.
Qin
,
H. Q.
Wang
, and
Y. W.
Jiang
,
IEEE Antennas Wireless Propag. Lett.
15
,
1873
1876
(
2016
).
7.
K.
Liu
,
Y. Q.
Cheng
,
Y.
Gao
,
X.
Li
,
Y. L.
Qin
, and
H. Q.
Wang
,
Appl. Phys. Lett.
110
,
164102
(
2017
).
8.
M. P. J.
Lavery
,
F. C.
Speirits
,
S. M.
Barnett
, and
M. J.
Padgett
,
Science
341
,
537
540
(
2013
).
9.
S. F.
Yu
,
F. F.
Pang
,
H. H.
Liu
,
X. J.
Li
,
J. F.
Yang
, and
T. Y.
Wang
,
Appl. Phys. Lett.
111
,
091107
(
2017
).
10.
L. Q.
Qiu
,
H. F.
Hu
,
Y.
Zhao
,
J.
Li
, and
Q.
Wang
,
Instrum. Sci. Technol.
45
,
123
136
(
2017
).
11.
J.
Sadeghi
,
D. E. W.
Patabadige
,
A. H.
Culbertson
,
H.
Latifi
, and
C. T.
Culbertson
,
Lab Chip
16
,
3957
3968
(
2016
).
12.
J.
Sadeghi
,
D. E. W.
Patabadige
,
A. H.
Culbertson
,
H.
Latifi
, and
C. T.
Culbertson
,
Lab Chip
17
,
145
155
(
2017
).
13.
Y.
Qian
,
Y.
Zhao
,
Q. L.
Wu
, and
Y.
Yang
,
Sens. Actuators B
260
,
86
105
(
2018
).
14.
J.
Sadeghi
,
H.
Latifi
,
J. L.
Santos
,
Z.
Chenari
, and
F.
Ziaee
,
Appl. Phys. Lett.
104
,
071910
(
2014
).
15.
J.
Sadeghi
,
H.
Latifi
,
M.
Murawski
,
F.
Mirkhosravi
,
T.
Nasilowski
,
P.
Mergo
, and
K.
Poturaj
,
IEEE J. Sel. Top. Quantum Electron.
22
,
4400206
(
2016
).
16.
Y.
Zhao
,
M. Q.
Chen
,
F.
Xia
, and
R. Q.
Lv
,
Sens. Actuators A
270
,
162
169
(
2018
).
17.
X. F.
Wang
,
G.
Farrell
,
E.
Lewis
,
K.
Tian
,
L. B.
Yuan
, and
P. F.
Wang
,
J. Lightwave Technol.
35
,
1725
1731
(
2017
).
18.
Y.
Zhao
,
Q. L.
Wu
, and
Y. N.
Zhang
,
Sens. Actuators B
258
,
822
828
(
2018
).
19.
R. Q.
Lv
,
L. Q.
Qiu
,
H. F.
Hu
,
L.
Meng
, and
Y.
Zhang
,
Appl. Phys. B
124
,
32
(
2018
).

Supplementary Material

You do not currently have access to this content.