We propose a single-step fabrication method for polydimethylsiloxane (PDMS) cell-adhesive microwell arrays with long-lasting (>10 months in aqueous medium) hydrophilic inner surfaces without the need for any chemical treatment such as development. Irradiation of a PDMS film with a low-energy electron beam (55 kV) in air generated a ∼40-μm-thick hydrophilic silica-like layer on the PDMS surface, which was the key to the prolonged hydrophilicity. Moreover, the concomitant compaction of the irradiated area produced dozens-of-micrometers-deep concave wells. The hydrophilic microwells generated on the hydrophobic non-irradiated PDMS surface easily trapped nano-/picoliter droplets and cells/single-cells. In addition, the surfaces of the microwells offered stable and favorable cell-adherent environments. The method presented here can realize stable and reliable lab-on-chips and cater to the expanding demand in biological and medical applications.

1.
A.
Piruska
,
I.
Nikcevic
,
S. H.
Lee
,
C.
Ahn
,
W. R.
Heineman
,
P. A.
Limbach
, and
C. J.
Seliskar
,
Lab Chip
5
,
1348
(
2005
).
2.
3.
J.
Zhou
,
D. A.
Khodakov
,
A. V.
Ellis
, and
N. H.
Voelcker
,
Electrophoresis
33
,
89
(
2012
).
4.
A.
Tóth
,
I.
Bertóti
,
M.
Blazsó
,
G.
Bánhegyi
,
A.
Bognar
, and
P.
Szaplonczay
,
J. Appl. Polym. Sci.
52
,
1293
(
1994
).
5.
H.
Hillborg
,
J. F.
Ankner
,
U. W.
Gedde
,
G. D.
Smith
,
H. K.
Yasuda
, and
K.
Wikström
,
Polymer
41
,
6851
(
2000
).
6.
J.
Kim
,
M. K.
Chaudhury
,
M. J.
Owen
, and
T.
Orbeck
,
J. Colloid Interface Sci.
244
,
200
(
2001
).
7.
H.
Hillborg
,
M.
Sandelin
, and
U. W.
Gedde
,
Polymer
42
,
7349
(
2001
).
8.
H.
Hirayama
,
Y.
Namito
,
A. F.
Bielajew
,
S. J.
Wilderman
, and
W. R.
Nelson
, “
The EGS5 code system
,”
Stanford Linear Accelerator Center Report No. SLAC-R-730
(
2005
).
9.
Y.
Tamada
and
Y.
Ikada
,
J. Biomed. Mater. Res.
28
,
783
(
1994
).
10.
D. W.
Kang
,
I. S.
Kuk
,
C. H.
Jung
,
I. T.
Hwang
,
J. H.
Choi
,
Y. C.
Nho
,
S.
Mun
, and
Y. M.
Lee
,
Polym. Korea
35
,
157
(
2011
).
11.
R.
Huszank
,
D.
Szikra
,
A.
Simon
,
S. Z.
Szilasi
, and
I. P.
Nagy
,
Langmuir
27
,
3842
(
2011
).
12.
S. Z.
Szilasi
,
J.
Kokavecz
,
R.
Huszank
, and
I.
Rajta
,
Appl. Surf. Sci.
257
,
4612
(
2011
).
13.
S. Z.
Szilasi
,
N.
Hegman
,
A.
Csik
, and
I.
Rajta
,
Microelectron. Eng.
88
,
2885
(
2011
).
14.
J.
Bowen
,
D.
Cheneler
, and
A. P. G.
Robinson
,
Microelectron. Eng.
97
,
34
(
2012
).
15.
S. H.
Tan
,
N. T.
Nguyen
,
Y. C.
Chua
, and
T. G.
Kang
,
Biomicrofluidics
4
,
032204
(
2010
).
16.
D. J. T.
Hill
,
C. M. L.
Preston
,
D. J.
Salisbury
, and
A. K.
Whittaker
,
Radiat. Phys. Chem.
62
,
11
(
2001
).
17.
P.
Zhang
,
J.
Zhang
,
S.
Bian
,
Z.
Chen
,
Y.
Hu
,
R.
Hu
,
J.
Li
,
Y.
Cheng
,
X.
Zhang
,
Y.
Zhou
,
X.
Chen
, and
P.
Liu
,
Lab Chip
16
,
2996
(
2016
).
18.
D.
Decrop
,
G.
Pardon
,
L.
Brancato
,
D.
Kil
,
R. Z.
Shafagh
,
T.
Kokalj
,
T.
Haraldsson
,
R.
Puers
,
W.
Van Der Wijngaart
, and
J.
Lammertyn
,
ACS Appl. Mater. Interfaces
9
,
10418
(
2017
).
19.
E.
Biazar
,
M.
Heidari
,
A.
Asefnejad
, and
N.
Montazeri
,
Int. J. Nanomed.
2011
,
631
.

Supplementary Material

You do not currently have access to this content.