Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.
Skip Nav Destination
Article navigation
14 May 2018
Research Article|
May 18 2018
Compact 3D quantum memory
Edwar Xie;
Edwar Xie
a)
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
3
Nanosystems Initiative Munich (NIM)
, Schellingstraße 4, 80799 Müunchen, Germany
Search for other works by this author on:
Frank Deppe;
Frank Deppe
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
3
Nanosystems Initiative Munich (NIM)
, Schellingstraße 4, 80799 Müunchen, Germany
Search for other works by this author on:
Michael Renger;
Michael Renger
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Daniel Repp;
Daniel Repp
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Peter Eder;
Peter Eder
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
3
Nanosystems Initiative Munich (NIM)
, Schellingstraße 4, 80799 Müunchen, Germany
Search for other works by this author on:
Michael Fischer;
Michael Fischer
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
3
Nanosystems Initiative Munich (NIM)
, Schellingstraße 4, 80799 Müunchen, Germany
Search for other works by this author on:
Jan Goetz
;
Jan Goetz
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Stefan Pogorzalek;
Stefan Pogorzalek
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Kirill G. Fedorov;
Kirill G. Fedorov
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
Search for other works by this author on:
Achim Marx;
Achim Marx
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
Search for other works by this author on:
Rudolf Gross
Rudolf Gross
b)
1
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
, 85748 Garching, Germany
2
Physik-Department, Technische Universität München
, 85748 Garching, Germany
3
Nanosystems Initiative Munich (NIM)
, Schellingstraße 4, 80799 Müunchen, Germany
Search for other works by this author on:
a)
Electronic mail: [email protected]
b)
Electronic mail: [email protected]
Appl. Phys. Lett. 112, 202601 (2018)
Article history
Received:
March 15 2018
Accepted:
April 29 2018
Citation
Edwar Xie, Frank Deppe, Michael Renger, Daniel Repp, Peter Eder, Michael Fischer, Jan Goetz, Stefan Pogorzalek, Kirill G. Fedorov, Achim Marx, Rudolf Gross; Compact 3D quantum memory. Appl. Phys. Lett. 14 May 2018; 112 (20): 202601. https://doi.org/10.1063/1.5029514
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Broadband transparency in terahertz free-standing anapole metasurface
Isaac Appiah Otoo, Alexey Basharin, et al.
Related Content
Ultrawide-range photon number calibration using a hybrid system combining nano-electromechanics and superconducting circuit quantum electrodynamics
Appl. Phys. Lett. (October 2018)
Fast flux control of 3D transmon qubits using a magnetic hose
Appl. Phys. Lett. (January 2021)
Realization of dark state in a three-dimensional transmon superconducting qutrit
Appl. Phys. Lett. (November 2015)
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
Appl. Phys. Lett. (January 2016)
Tunable coupling of a quantum phononic resonator to a transmon qubit via galvanic-contact flip-chip architecture
Appl. Phys. Lett. (July 2024)