Strongly coupled metamaterial resonances typically undergo mode-splitting by which there is an exchange of energy between matter excitations and photons. Here, we report a strong coupling of the lattice mode with the structural eigen-resonances of an asymmetric split-ring metamaterial associated with mode-splitting and resonance line-narrowing that gives rise to high quality factor (Q-factor) resonances. We demonstrate selective control of the resonance strength, line-width, and Q-factor of individual split-ring modes by tailoring the coupling of the fundamental lattice mode to each of the hybridized resonances. A three-coupled-oscillator model shows lattice-mediated strong coupling in the form of an anti-crossing behavior between the hybridized metamaterial resonances. Such schemes of strong coupling between the lattice and the hybrid modes of the metamaterial unit cell offer an avenue to invoke lattice induced transparency, high-Q resonances and strong field confinement, which could find applications in designing slow light devices, ultrasensitive sensors, and multiband narrow filters.

1.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
(
11
),
2075
(
1999
).
2.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
,
Science
305
(
5685
),
788
(
2004
).
3.
D. R.
Smith
,
W. J.
Padilla
,
D. C.
Vier
,
S. C.
Nemat-Nasser
, and
S.
Schultz
,
Phys. Rev. Lett.
84
,
4184
(
2000
).
4.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
(
5781
),
1780
(
2006
).
5.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
(
5801
),
977
(
2006
).
6.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
,
Science
308
(
5721
),
534
(
2005
).
7.
8.
B.
Lahiri
,
A. Z.
Khokhar
,
R. M.
De La Rue
,
S. G.
McMeekin
, and
N. P.
Johnson
,
Opt. Express
17
(
2
),
1107
(
2009
).
9.
B.
Dastmalchi
,
P.
Tassin
,
T.
Koschny
, and
C. M.
Soukoulis
,
Phys. Rev. B
89
(
11
),
115123
(
2014
).
10.
A. E.
Çetin
,
A.
Artar
,
M.
Turkmen
,
A. A.
Yanik
, and
H.
Altug
,
Opt. Express
19
(
23
),
22607
(
2011
).
11.
N.
Liu
,
L.
Langguth
,
T.
Weiss
,
J.
Kastel
,
M.
Fleischhauer
,
T.
Pfau
, and
H.
Giessen
,
Nat. Mater.
8
(
9
),
758
(
2009
).
12.
N.
Liu
,
T.
Weiss
,
M.
Mesch
,
L.
Langguth
,
U.
Eigenthaler
,
M.
Hirscher
,
C.
Sönnichsen
, and
H.
Giessen
,
Nano Lett.
10
(
4
),
1103
(
2010
).
13.
N.
Papasimakis
,
V. A.
Fedotov
,
N. I.
Zheludev
, and
S. L.
Prosvirnin
,
Phys. Rev. Lett.
101
(
25
),
253903
(
2008
).
14.
P.
Tassin
,
L.
Zhang
,
T.
Koschny
,
E. N.
Economou
, and
C. M.
Soukoulis
,
Phys. Rev. Lett.
102
(
5
),
053901
(
2009
).
15.
S.
Zhang
,
D. A.
Genov
,
Y.
Wang
,
M.
Liu
, and
X.
Zhang
,
Phys. Rev. Lett.
101
(
4
),
047401
(
2008
).
16.
P.
Vasa
,
R.
Pomraenke
,
S.
Schwieger
,
Y. I.
Mazur
,
V.
Kunets
,
P.
Srinivasan
,
E.
Johnson
,
J. E.
Kihm
,
D. S.
Kim
,
E.
Runge
,
G.
Salamo
, and
C.
Lienau
,
Phys. Rev. Lett.
101
(
11
),
116801
(
2008
).
17.
F.
Neubrech
,
A.
Pucci
,
T. W.
Cornelius
,
S.
Karim
,
A.
García-Etxarri
, and
J.
Aizpurua
,
Phys. Rev. Lett.
101
(
15
),
157403
(
2008
).
18.
F.
Neubrech
,
D.
Weber
,
D.
Enders
,
T.
Nagao
, and
A.
Pucci
,
J. Phys. Chem. C
114
(
16
),
7299
(
2010
).
19.
D. J.
Shelton
,
I.
Brener
,
J. C.
Ginn
,
M. B.
Sinclair
,
D. W.
Peters
,
K. R.
Coffey
, and
G. D.
Boreman
,
Nano Lett.
11
(
5
),
2104
(
2011
).
20.
R. W.
Wood
,
Philos. Mag.
4
(
21
),
396
(
1902
).
21.
A.
Bitzer
,
J.
Wallauer
,
H.
Helm
,
H.
Merbold
,
T.
Feurer
, and
M.
Walther
,
Opt. Express
17
(
24
),
22108
(
2009
).
22.
P.
Klarskov
,
A. T.
Tarekegne
,
K.
Iwaszczuk
,
X. C.
Zhang
, and
P. U.
Jepsen
,
Sci. Rep.
6
,
37738
(
2016
).
23.
A.
Halpin
,
N.
van Hoof
,
A.
Bhattacharya
,
C.
Mennes
, and
J. G.
Rivas
,
Phys. Rev. B
96
(
8
),
085110
(
2017
).
24.
J.
Keller
,
C.
Maissen
,
J.
Haase
,
G. L.
Paravicini-Bagliani
,
F.
Valmorra
,
J.
Palomo
,
J.
Mangeney
,
J.
Tignon
,
S. S.
Dhillon
,
G.
Scalari
, and
J.
Faist
,
Adv. Opt. Mater.
5
(
6
),
1600884
(
2017
).
25.
N.
Xu
,
R.
Singh
, and
W.
Zhang
,
Appl. Phys. Lett.
109
(
2
),
021108
(
2016
).
26.
G. R.
Keiser
,
H. R.
Seren
,
A. C.
Strikwerda
,
X.
Zhang
, and
R. D.
Averitt
,
Appl. Phys. Lett.
105
(
8
),
081112
(
2014
).
27.
X.
Zhao
,
K.
Fan
,
J.
Zhang
,
G. R.
Keiser
,
G.
Duan
,
R. D.
Averitt
, and
X.
Zhang
,
Microsyst. Nanoeng.
2
,
16025
(
2016
).
28.
N. I.
Zheludev
,
S. L.
Prosvirnin
,
N.
Papasimakis
, and
V. A.
Fedotov
,
Nat. Photonics
2
(
6
),
351
(
2008
).
29.
M. C.
Schaafsma
,
A.
Bhattacharya
, and
J. G.
Rivas
,
ACS Photonics
3
(
9
),
1596
(
2016
).
30.
M.
Manjappa
,
Y. K.
Srivastava
, and
R.
Singh
,
Phys. Rev. B
94
(
16
),
161103
(
2016
).
31.
V. A.
Fedotov
,
N.
Papasimakis
,
E.
Plum
,
A.
Bitzer
,
M.
Walther
,
P.
Kuo
,
D. P.
Tsai
, and
N. I.
Zheludev
,
Phys. Rev. Lett.
104
(
22
),
223901
(
2010
).
32.
R.
Singh
,
C.
Rockstuhl
, and
W.
Zhang
,
Appl. Phys. Lett.
97
(
24
),
241108
(
2010
).
33.
L.
Novotny
,
Am. J. Phys.
78
(
11
),
1199
(
2010
).
34.
H.
Xu
,
Y.
Lu
,
Y. P.
Lee
, and
B. S.
Ham
,
Opt. Express
18
(
17
),
17736
(
2010
).
35.
N.
Xu
,
M.
Manjappa
,
R.
Singh
, and
W.
Zhang
,
Adv. Opt. Mater.
4
(
8
),
1179
(
2016
).

Supplementary Material

You do not currently have access to this content.