We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

1.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
,
Science
314
,
977
(
2006
).
2.
3.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
,
Phys. Rev. Lett.
100
,
207402
(
2008
).
4.
M. J.
Lockyear
,
A. P.
Hibbins
,
J. R.
Sambles
,
P. A.
Hobson
, and
C. R.
Lawrence
,
Appl. Phys. Lett.
94
,
041913
(
2009
).
5.
Y.
Avitzour
,
Y. A.
Urzhumov
, and
G.
Shvets
,
Phys. Rev. B
79
,
045131
(
2009
).
6.
C.
Hu
,
L.
Liu
,
Z.
Zhao
,
X.
Chen
, and
X.
Luo
,
Opt. Express
17
,
16745
(
2009
).
7.
B.
Zhu
,
C.
Huang
,
Y.
Feng
,
J.
Zhao
, and
T.
Jiang
,
Prog. Electromagn. Res. B
24
,
121
(
2010
).
8.
W.
Ben-Xin
,
Z.
Xiang
,
W.
Gui-Zhen
,
H.
Wei-Qing
, and
W.
Ling-Ling
,
Opt. Mater. Express
5
,
227
(
2015
).
9.
I.
Sersic
,
M.
Frimmer
,
E.
Verhagen
, and
A. F.
Koenderink
,
Phys. Rev. Lett.
103
,
213902
(
2009
).
10.
N.
Liu
,
H.
Liu
,
S.
Zhu
, and
H.
Giessen
,
Nat. Photonics
3
,
157
(
2009
).
11.
P.
Lunnemann
,
I.
Sersic
, and
A. F.
Koenderink
,
Phys. Rev. B
88
,
245109
(
2013
).
12.
D. A.
Powell
,
M.
Lapine
,
M. V.
Gorkunov
,
I. V.
Shadrivov
, and
Y. S.
Kivshar
,
Phys. Rev. B
82
,
155128
(
2010
).
13.
E.
Ekmekci
,
A. C.
Strikwerda
,
K.
Fan
,
G.
Keiser
,
X.
Zhang
,
G.
Turhan-Sayan
, and
R. D.
Averitt
,
Phys. Rev. B
83
,
193103
(
2011
).
14.
C.-Y.
Hao
,
C.-C.
Chin
,
A.
Ishikawa
,
S.
Ming-Hua
,
L.-Y.
Shin
,
H.-C.
Nan
,
C.-H.
Pang
, and
T.
Takuo
,
Opt. Express
25
,
2909
(
2017
).
15.
X.
Xiong
,
J.
Shang-Chi
,
H.
Yu-Hui
,
P.
Ru-Wen
, and
M.
Wang
,
Adv. Mater.
25
,
3994
(
2013
).
16.
C.-C.
Chen
,
C. T.
Hsiao
,
S.
Sun
,
K.-Y.
Yang
,
P. C.
Wu
,
W. T.
Chen
,
Y. H.
Tang
,
Y.-F.
Chau
,
E.
Plum
,
G.-Y.
Guo
,
N. I.
Zheludev
, and
D. P.
Tsai
,
Opt. Express
20
,
9415
(
2012
).
17.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Elsevier
,
1998
), Vol.
1
, p.
369
.
18.
Y.
Moritake
and
T.
Tanaka
,
Sci. Rep.
7
,
6726
(
2017
).

Supplementary Material

You do not currently have access to this content.