A significant challenge in flexural wave energy harvesting is the design of an aberration-free lens capable of finely focusing waves over a broad frequency range. To date, flexural lenses have been created using discrete inclusions, voids, or stubs, often in a periodic arrangement, to focus waves via scattering. These structures are narrowband either because scattering is efficient over a small frequency range or the arrangements exploit Bragg scattering bandgaps, which themselves are narrowband. In addition, current lens designs are based on a single frequency and approximate the necessary refractive index profile discretely, introducing aberrations and frequency-dependent focal points. Here, we design a flexural GRIN lens in a thin plate by smoothly varying the plate's rigidity and thus its refractive index. Our lens (i) is broadband since the design does not depend on frequency and does not require bandgaps, (ii) has a fixed focal point over a wide range of frequencies, and (iii) is theoretically capable of zero-aberration focusing. We numerically explore our Continuous Profile GRIN lens (CP-GRIN lens) and then experimentally validate an implemented design. Furthermore, we use a piezoelectric energy harvester disk, located at the first focus of the CP-GRIN, to document improvements in power gain.

1.
A.
Climente
,
D.
Torrent
,
J.
Sánchez-dehesa
,
A.
Climente
, and
D.
Torrent
, “
Omnidirectional broadband acoustic absorber based on metamaterials
,”
Appl. Phys. Lett.
100
,
144103
(
2014
).
2.
J.
Zhao
,
R.
Marchal
,
B.
Bonello
, and
O.
Boyko
, “
Efficient focalization of antisymmetric Lamb waves in gradient-index phononic crystal plates
,”
Appl. Phys. Lett.
101
,
261905
(
2012
).
3.
A.
Zareei
and
M.
Alam
, “
Broadband cloaking of flexural waves
,”
Phys. Rev. E
95
,
063002
(
2017
).
4.
D.
Lu
and
Z.
Liu
, “
Hyperlenses and metalenses for far-field super-resolution imaging
,”
Nat. Commun.
3
,
1205
(
2012
).
5.
T.
Chen
,
S.
Li
, and
H.
Sun
, “
Metamaterials application in sensing
,”
Sensors
12
,
2742
2765
(
2012
).
6.
C. A.
Howells
, “
Piezoelectric energy harvesting
,”
Energy Convers. Manage.
50
,
1847
1850
(
2009
).
7.
G.
Litak
,
M.
Friswell
, and
S.
Adhikari
, “
Magnetopiezoelastic energy harvesting driven by random excitations
,”
Appl. Phys. Lett.
96
,
214103
(
2010
).
8.
S.
Roundy
,
P. K.
Wright
, and
J. M.
Rabaey
,
Energy Scavenging for Wireless Sensor Networks
(
Springer
,
2003
).
9.
P.
Glynne-Jones
,
M. J.
Tudor
,
S. P.
Beeby
, and
N. M.
White
, “
An electromagnetic, vibration-powered generator for intelligent sensor systems
,”
Sens. Actuators A: Phys.
110
,
344
349
(
2004
).
10.
L.
Wang
and
F.
Yuan
, “
Vibration energy harvesting by magnetostrictive material
,”
Smart Mater. Struct.
17
,
045009
(
2008
).
11.
S. B.
Horowitz
,
M.
Sheplak
,
L. N.
Cattafesta
 III
, and
T.
Nishida
, “
A MEMS acoustic energy harvester
,”
J. Micromech. Microeng.
16
,
S174
(
2006
).
12.
L.-Y.
Wu
,
L.-W.
Chen
, and
C.-M.
Liu
, “
Acoustic energy harvesting using resonant cavity of a sonic crystal
,”
Appl. Phys. Lett.
95
,
013506
(
2009
).
13.
C. J.
Rupp
,
M. L.
Dunn
, and
K.
Maute
, “
Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids
,”
Appl. Phys. Lett.
96
,
111902
(
2010
).
14.
G.
Park
,
T.
Rosing
,
M. D.
Todd
,
C. R.
Farrar
, and
W.
Hodgkiss
, “
Energy harvesting for structural health monitoring sensor networks
,”
J. Infrastruct. Syst.
14
,
64
79
(
2008
).
15.
S.
Priya
and
D. J.
Inman
,
Energy Harvesting Technologies
(
Springer
,
2009
), Vol.
21
.
16.
D.
Niyato
,
E.
Hossain
,
M. M.
Rashid
, and
V. K.
Bhargava
, “
Wireless sensor networks with energy harvesting technologies: A game-theoretic approach to optimal energy management
,”
IEEE Wireless Commun.
14
,
90
96
(
2007
).
17.
K.
Yi
,
M.
Collet
,
M.
Ichchou
, and
L.
Li
, “
Flexural waves focusing through shunted piezoelectric patches
,”
Smart Mater. Struct.
25
,
075007
(
2016
).
18.
T.-T.
Wu
,
Y.-T.
Chen
,
J.-H.
Sun
,
S.-C. S.
Lin
, and
T. J.
Huang
, “
Focusing of the lowest antisymmetric lamb wave in a gradient-index phononic crystal plate
,”
Appl. Phys. Lett.
98
,
171911
(
2011
).
19.
E.
Andreassen
,
K.
Manktelow
, and
M.
Ruzzene
, “
Directional bending wave propagation in periodically perforated plates
,”
J. Sound Vib.
335
,
187
203
(
2015
).
20.
M.
Ruzzene
and
F.
Scarpa
, “
Control of wave propagation in sandwich beams with auxetic core
,”
J. Intell. Mater. Syst. Struct.
14
,
443
453
(
2003
).
21.
A.
Khelif
,
A.
Choujaa
,
S.
Benchabane
,
B.
Djafari-Rouhani
, and
V.
Laude
, “
Guiding and bending of acoustic waves in highly confined phononic crystal waveguides
,”
Appl. Phys. Lett.
84
,
4400
4402
(
2004
).
22.
M. I.
Hussein
,
M. J.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
,
040802
(
2014
).
23.
M.
Carrara
,
M.
Cacan
,
J.
Toussaint
,
M.
Leamy
,
M.
Ruzzene
, and
A.
Erturk
, “
Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
,”
Smart Mater. Struct.
22
,
065004
(
2013
).
24.
M.
Carrara
,
M.
Cacan
,
M.
Leamy
,
M.
Ruzzene
, and
A.
Erturk
, “
Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror
,”
Appl. Phys. Lett.
100
,
204105
(
2012
).
25.
S.
Qi
,
M.
Oudich
,
Y.
Li
, and
B.
Assouar
, “
Acoustic energy harvesting based on a planar acoustic metamaterial
,”
Appl. Phys. Lett.
108
,
263501
(
2016
).
26.
M.
Carrara
,
J.
Kulpe
,
S.
Leadenham
,
M.
Leamy
, and
A.
Erturk
, “
Fourier transform-based design of a patterned piezoelectric energy harvester integrated with an elastoacoustic mirror
,”
Appl. Phys. Lett.
106
,
013907
(
2015
).
27.
A.
Darabi
and
M.
Leamy
, “
Multiple scattering of acoustoelastic waves in thin plates for enhanced energy harvesting
,” in
ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
(
American Society of Mechanical Engineers
,
2016
), pp.
V002T07A011
.
28.
A.
Darabi
and
M.
Leamy
, “
Analysis and experimental verification of multiple scattering of acoustoelastic waves in thin plates for enhanced energy harvesting
,”
Smart Mater. Struct.
26
,
085015
(
2017
).
29.
S.
Tol
,
F.
Degertekin
, and
A.
Erturk
, “
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
,”
Appl. Phys. Lett.
109
,
063902
(
2016
).
30.
A.
Climente
,
D.
Torrent
, and
J.
Sánchez-Dehesa
, “
Gradient index lenses for flexural waves based on thickness variations
,”
Appl. Phys. Lett.
105
,
064101
(
2014
).
31.
S.-C. S.
Lin
,
T. J.
Huang
,
J.-H.
Sun
, and
T.-T.
Wu
, “
Gradient-index phononic crystals
,”
Phys. Rev. B
79
,
094302
(
2009
).
32.
X.
Yan
,
R.
Zhu
,
G.
Huang
, and
F.-G.
Yuan
, “
Focusing guided waves using surface bonded elastic metamaterials
,”
Appl. Phys. Lett.
103
,
121901
(
2013
).
33.
T.-T.
Wu
,
M.-J.
Chiou
,
Y.-C.
Lin
, and
T.
Ono
, “
Design and fabrication of a gradient-index phononic quartz plate lens
,”
Proc. SPIE
8994
,
89940G
(
2014
).
34.
Y.
Jin
,
D.
Torrent
,
Y.
Pennec
,
Y.
Pan
, and
B.
Djafari-Rouhani
, “
Simultaneous control of the S0 and A0 lamb modes by graded phononic crystal plates
,”
J. Appl. Phys.
117
,
244904
(
2015
).
35.
C.
Gomez-Reino
,
M. V.
Perez
, and
C.
Bao
,
Gradient-Index Optics: Fundamentals and Applications
(
Springer Science & Business Media
,
2012
).
36.
H.
Li
,
C.
Tian
, and
Z. D.
Deng
, “
Energy harvesting from low frequency applications using piezoelectric materials
,”
Appl. Phys. Rev.
1
,
041301
(
2014
).
37.
F. L.
Degertekin
and
B. T.
Khuri-Yakub
, “
Single mode lamb wave excitation in thin plates by Hertzian contacts
,”
Appl. Phys. Lett.
69
,
146
148
(
1996
).
38.
F.
Hecht
, “
New development in freefem++
,”
J. Numer. Math.
20
,
251
266
(
2013
).
You do not currently have access to this content.