The influence of the localized surface plasmon resonance on the magneto-optical Kerr effect (MOKE) was investigated in Ni80Fe20 thin films coated with gold nanorods. The nanorods are dimensionally tuned to support localized surface plasmon resonance near the incident laser frequency. A significant enhancement of magneto-optical response is observed, in which the MOKE signal is increased by over 40% compared to the reference Ni80Fe20 films. The spectral dependence of MOKE signals exhibits the maximum magneto-optical response centered around the longitudinal surface plasmon resonance wavelength of gold nanorods. Finite-difference time-domain modeling confirms that the excitation of the localized surface plasmons leads to the enhancement of magneto-optical responses.

1.
X.
Huang
and
M.
El-Sayed
,
Alexandria J. Med.
47
,
1
(
2011
).
2.
C.
Hermann
,
V. A.
Kosovkin
,
G.
Lampel
,
J.
Peretti
,
V. I.
Safarov
, and
P.
Bertrand
,
Phys. Rev. B
64
,
235422
(
2001
).
3.
T.
Katayama
,
Y.
Suzuki
,
H.
Awano
,
Y.
Nishihara
, and
N.
Koshizuka
,
Phys. Rev. Lett.
60
,
1426
(
1988
).
4.
V.
Belotelov
,
I.
Akimov
,
M.
Pohl
,
V.
Kotov
,
S.
Kasture
,
A.
Vengurlekar
,
A.
Gopal
,
D.
Yakovlev
,
A.
Zvezdin
, and
M.
Bayer
,
Nat. Nanotechnol.
6
,
370
(
2011
).
5.
D.
Newman
,
M.
Wears
,
R.
Matelon
, and
I.
Hooper
,
J. Phys.: Condens. Matter
20
,
345230
(
2008
).
6.
G.
Du
,
T.
Mori
,
M.
Suzuki
,
S.
Saito
,
H.
Fukuda
, and
M.
Takahashi
,
Appl. Phys. Lett.
96
,
081915
(
2010
).
7.
V.
Sharma
,
K.
Park
, and
M.
Srinivasarao
,
Mater. Sci. Eng. R. Rep.
65
,
1
(
2009
).
8.
H.
Xu
,
G.
Hajisalem
,
G. M.
Steeves
,
R.
Gordon
, and
B. C.
Choi
,
Sci. Rep.
5
,
15933
(
2015
).
9.
Lumerical Solutions, www.lumerical.com, for finite-difference time-domain (FDTD) simulations.
10.
T.
Yoshino
and
S.
Tanaka
,
Opt. Commun.
1
,
149
(
1969
).
11.
P.
Johnson
and
R.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
12.
P. K.
Jain
,
K. S.
Lee
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
,
J. Phys. Chem. B
110
,
7238
(
2006
).
13.
J.
Mock
,
R.
Hill
,
A.
Degiron
,
S.
Zauscher
,
A.
Chilkoti
, and
D.
Smith
,
Nano Lett.
8
,
2245
(
2008
).
14.
L.
Shao
,
K.
Woo
,
H.
Chen
,
Z.
Jin
,
J.
Wang
, and
H.
Lin
,
ACS Nano
4
,
3053
(
2010
).
15.
H.
Chen
,
L.
Shao
,
Q.
Li
, and
J.
Wang
,
Chem. Soc. Rev.
42
,
2679
(
2013
).
16.
W.
Kim
,
M.
Aderholz
, and
W.
Kleemann
,
Meas. Sci. Technol.
4
,
1275
(
1993
).
17.
K.
Tikuišis
,
L.
Beran
,
P.
Cejpek
,
K.
Uhlířová
,
J.
Hamrle
,
M.
Vaňatka
,
M.
Urbánek
, and
M.
Veis
,
Mater. Des.
114
,
31
(
2017
).
18.
S.
Tomita
,
T.
Kato
,
S.
Tsunashima
,
S.
Iwata
,
M.
Fujii
, and
S.
Hayashi
,
Phys. Rev. Lett.
96
,
167402
(
2006
).
19.
T. J.
Moravec
,
J. C.
Rife
, and
R. N.
Dexter
,
Phys. Rev. B
13
,
3297
(
1976
).
20.
N.
Ahmad
,
J.
Stokes
,
N. A.
Fox
,
M.
Teng
, and
M. J.
Cryan
,
Nano Energy
1
,
777
(
2012
).
21.
J.
Olson
,
S.
Dominguez-Medina
,
A.
Hoggard
,
L.
Wang
,
W.
Chang
, and
S.
Link
,
Chem. Soc. Rev.
44
,
40
(
2015
).
22.
G.
Armelles
,
A.
Cebollada
,
A.
García-Martín
, and
M. U.
González
,
Adv. Opt. Mater.
1
,
10
(
2013
).
23.
Y.
Abate
,
A.
Schwartzberg
,
D.
Strasser
, and
S. R.
Leone
,
Chem. Phys. Lett.
474
,
146
(
2009
).
24.
P.
Nordlander
and
E.
Prodan
,
Nano Lett.
4
,
2209
(
2004
).
You do not currently have access to this content.