We study the dynamic compressive response of vertically aligned helical carbon nanotube forests using a mesoscale model. To describe the compressive response, the model includes the helical geometry of the constituent coils, the entanglement between neighboring coils, and the sideway interactions among coils. Coarse-grained simulations show forest densification and stress localization, which are caused by different deformation mechanisms such as coil packing, buckling, and crushing. We find that these mechanisms depend on the initial overlap between coils and lead to a nonlinear stress-strain behavior that agrees with recent impact experiments. The nonlinear stress-strain behavior was shown to be composed of an initial linear increase of stress in strain followed by an exponential growth. These regimes are an outcome of the characteristics of both the individual coils and the entangled morphology of the forests.

1.
S. H.
Park
,
P.
Theilmann
,
K.
Yang
,
A. M.
Rao
, and
P. R.
Bandaru
,
Appl. Phys. Lett.
96
,
043115
(
2010
).
2.
A.
Leela Mohana Reddy
,
R. I.
Jafri
,
N.
Jha
,
S.
Ramaprabhu
, and
P. M.
Ajayan
,
J. Mater. Chem.
21
,
16103
(
2011
).
3.
R. B.
Rakhi
,
W.
Chen
, and
H. N.
Alshareef
,
J. Mater. Chem.
22
,
5177
(
2012
).
4.
C.
Daraio
,
V. F.
Nesterenko
,
S.
Jin
,
W.
Wang
, and
A. M.
Rao
,
J. Appl. Phys.
100
,
064309
(
2006
).
5.
R.
Thevamaran
,
M.
Karakaya
,
E. R.
Meshot
,
A.
Fischer
,
R.
Podila
,
A. M.
Rao
, and
C.
Daraio
,
RSC Adv.
5
,
29306
(
2015
).
6.
F.
Fraternali
,
T.
Blesgen
,
A.
Amendola
, and
C.
Daraio
,
J. Mech. Phys. Solids
59
,
89
(
2011
).
7.
R.
Thevamaran
,
F.
Fraternali
, and
C.
Daraio
,
J. Appl. Mech.
81
,
121006
(
2014
).
8.
H.
Torabi
,
H.
Radhakrishnan
, and
S. D.
Mesarovic
,
J. Mech. Phys. Solids
72
,
144
(
2014
).
10.
L.
Wang
,
C.
Ortiz
, and
M. C.
Boyce
,
J. Eng. Mater. Technol.-T. ASME
133
,
011014
(
2010
).
11.
I. Y.
Stein
,
D. J.
Lewis
, and
B. L.
Wardle
,
Nanoscale
7
,
19426
(
2015
).
12.
I. Y.
Stein
and
B. L.
Wardle
,
Phys. Chem. Chem. Phys.
18
,
694
(
2016
).
13.
X.
Liang
,
J.
Shin
,
D.
Magagnosc
,
Y.
Jiang
,
S. J.
Park
,
A. J.
Hart
,
K.
Turner
,
D. S.
Gianola
, and
P. K.
Purohit
,
Int. J. Solids Struct.
122
,
196
(
2017
).
14.
V. R.
Coluci
,
A. F.
Fonseca
,
D. S.
Galvão
, and
C.
Daraio
,
Phys. Rev. Lett.
100
,
086807
(
2008
).
15.
M. J.
Buehler
,
J. Mater. Res.
21
,
2855
(
2006
).
16.
X.
Chen
,
S.
Zhang
,
D. A.
Dikin
,
W.
Ding
,
R. S.
Ruoff
,
L.
Pan
, and
Y.
Nakayama
,
Nano Lett.
3
,
1299
(
2003
).
17.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
,
J. Chem. Phys.
112
,
6472
(
2000
).
18.
C.-H.
Sun
,
G.-Q.
Lu
, and
H.-M.
Cheng
,
Phys. Rev. B
73
,
195414
(
2006
).
19.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
20.
M. R.
Maschmann
,
Q.
Zhang
,
F.
Du
,
L.
Dai
, and
J.
Baur
,
Carbon
49
,
386
(
2011
).
21.
S.
Pathak
,
N.
Mohan
,
E.
Decolvenaere
,
A.
Needleman
,
M.
Bedewy
,
A. J.
Hart
, and
J. R.
Greer
,
ACS Nano
7
,
8593
(
2013
).
22.
A.
Cao
,
P. L.
Dickrell
,
W. G.
Sawyer
,
M. N.
Ghasemi-Nejhad
, and
P. M.
Ajayan
,
Science
310
,
1307
(
2005
).
23.
J.
Suhr
,
P.
Victor
,
L.
Ci
,
S.
Sreekala
,
X.
Zhang
,
O.
Nalamasu
, and
P. M.
Ajayan
,
Nat. Nanotechnol.
2
,
417
(
2007
).
24.
R.
Thevamaran
,
E. R.
Meshot
, and
C.
Daraio
,
Carbon
84
,
390
(
2015
).
25.
Y.
Li
,
J.
Kang
,
J.-B.
Choi
,
J.-D.
Nam
, and
J.
Suhr
,
Nanotechnology
26
,
245701
(
2015
).

Supplementary Material

You do not currently have access to this content.