A technique for micromagnetic simulation of the magnetoelectric (ME) effect in Cr2O3 based structures has been developed. It has been observed that the microscopic ME susceptibility differs significantly from the experimentally measured values. The deviation between the two susceptibilities becomes more prominent near the Curie temperature, affecting the operation of the device at room temperature. A fully electric field controlled ME switching element has been proposed for use at technologically interesting densities: it employs quantum mechanical exchange at the boundaries instead of the applied magnetic field needed in traditional switching schemes. After establishing temperature dependent physics-based parameters, switching performances have been studied for different temperatures, applied electric fields, and Cr2O3 cross-sections. It has been found that our proposed use of quantum mechanical exchange favors reduced electric field operation and enhanced scalability while retaining reliable thermal stability.

1.
J.
Nogués
and
I. K.
Schuller
,
J. Magn. Magn. Mat.
192
,
203
232
(
1999
).
2.
P.
Borisov
,
A.
Hochstrat
,
X.
Chen
,
W.
Kleemann
, and
C.
Binek
,
Phys. Rev. Lett.
94
,
117203
(
2005
).
3.
X.
Chen
,
A.
Hochstrat
,
P.
Borisov
, and
W.
Kleemann
,
Appl. Phys. Lett.
89
,
202508
(
2006
).
4.
K. D.
Belashchenko
,
Phys. Rev. Lett.
105
,
147204
(
2010
).
5.
S.
Sahoo
,
S.
Polisetty
,
C.-G.
Duan
,
S. S.
Jaswal
,
E. Y.
Tsymbal
, and
C.
Binek
,
Phys. Rev. B
76
,
092108
(
2007
).
6.
X.
He
,
N.
Wu
,
A. N.
Caruso
,
E.
Vescovo
,
K. D.
Bekashchenko
,
P. A.
Dowben
, and
C.
Binek
,
Nat. Mater.
9
,
579
(
2010
).
7.
K.
Toyoki
,
Y.
Shiratsuchi
,
A.
Kobane
,
S.
Harimoto
,
S.
Onoue
,
H.
Nomura
, and
R.
Nakatani
,
J. Appl. Phys.
117
,
17D902
(
2015
).
8.
T.
Ashida
,
M.
Oida
,
N.
Shimomura
,
T.
Nozaki
,
T.
Shibata
, and
M.
Sahashi
,
Appl. Phys. Lett.
106
,
132407
(
2015
).
9.
P.
Borisov
,
A.
Hochstrat
,
V. V.
Shvartsman
, and
W.
Kleemann
,
Rev. Sci. Instrum.
78
,
106105
(
2007
).
10.
P.
Borisov
,
T.
Ashida
,
T.
Nozaki
,
M.
Sahashi
, and
D.
Lederman
,
Phys. Rev. B
93
,
174415
(
2016
).
11.
A. S.
Kilian
,
F.
Bernardi
,
A.
Pancotti
,
R.
Landers
,
A.
de Siervo
, and
J.
Morais
,
J. Phys. Chem. C
118
,
20452
(
2014
).
12.
R.
Ahmed
and
R. H.
Victora
,
AIP Adv.
7
,
055817
(
2017
).
13.
R.
Ahmed
and
R. H.
Victora
,
IEEE Trans. Magn.
51
,
4200104
(
2015
).
14.
15.
V. J.
Folen
,
G. T.
Rado
, and
E. W.
Stalder
,
Phys. Rev. Lett.
6
,
607
(
1961
).
16.
S.-K.
Ma
,
Modern Theory of Critical Phenomena
(
Academic
,
Massachusetts
,
1976
).
17.
R. H.
Victora
and
P.-W.
Huang
,
IEEE Trans. Magn.
49
,
751
(
2013
).
18.
X.
Feng
and
P. B.
Visscher
,
J. Appl. Phys.
89
,
6988
(
2001
).
19.
M.
Street
,
W.
Echtenkamp
,
T.
Komesu
,
S.
Cao
,
P. A.
Dowben
, and
C.
Binek
,
Appl. Phys. Lett.
104
,
222402
(
2014
).
20.
M.
Al-Mahdawi
,
Y.
Shiokawa
,
S. P.
Pati
,
S.
Ye
,
T.
Nozaki
, and
M.
Sahashi
,
J. Phys. D: Appl. Phys.
50
,
155004
(
2017
).
21.
M.
Al-Mahdawi
,
S. P.
Pati
,
Y.
Shiokawa
,
S.
Ye
,
T.
Nozaki
, and
M.
Sahashi
,
Phys. Rev. B
95
,
144423
(
2017
).
You do not currently have access to this content.