Polycrystalline diamond stripes, with a nominal thickness of ∼1.5 μm and various widths, were selectively grown on silicon substrates using chemical vapor deposition. Stress measurements using ultraviolet micro-Raman mapping reveal high compressive stress, up to ∼0.85 GPa, at the center of the diamond stripe, and moderate tensile stress, up to ∼0.14 GPa, in the substrate close to the interface with the diamond. Compressive stresses on diamond decrease with diminishing stripe widths. The stress map is well-described using finite element simulation incorporating solely thermal expansion effects.

1.
M.
Kuc
,
M.
Wasiak
, and
R. P.
Sarzala
,
IEEE Trans. Compon., Packag., Manuf. Technol.
5
(
4
),
474
482
(
2015
).
2.
Y.
Han
,
B. L.
Lau
,
G. Y.
Tang
, and
X. W.
Zhang
,
IEEE Trans. Compon., Packag., Manuf. Technol.
5
(
12
),
1740
1746
(
2015
).
3.
J.
Blevins
,
G. D.
Via
,
K.
Chabak
,
A.
Bar-Cohen
,
J. J.
Maurer
, and
A.
Kane
, in
Proceedings of CS MANTECH Conference
(May
2014
),
105
108
.
4.
Q. Z.
Wu
,
Y. H.
Xu
,
J. J.
Zhou
,
Y. C.
Kong
,
T. S.
Chen
,
Y.
Wang
,
F. J.
Lin
,
Y.
Fu
,
Y. H.
Jia
,
X. D.
Zhao
,
B.
Yan
, and
R. M.
Xu
,
ECS J. Solid State Sci. Technol.
6
(
12
),
Q171
Q178
(
2017
).
5.
B. L.
Hancock
,
M.
Nazari
,
J.
Anderson
,
E.
Piner
,
F.
Faili
,
S.
Oh
,
D.
Twitchen
,
S.
Graham
, and
M.
Holtz
,
Appl. Phys. Lett.
108
,
211901
(
2016
).
6.
C. Y.
Hua
,
X. B.
Yan
,
J. J.
Wei
,
J. C.
Guo
,
J. L.
Liu
,
L. X.
Chen
,
L. F.
Hei
, and
C. M.
Li
,
Diamond Related Mater.
73
,
62
66
(
2017
).
7.
M. J.
Edwards
,
C. R.
Bowen
,
D. W. E.
Allsopp
, and
A. C. E.
Dent
,
J. Phys. D: Appl. Phys.
43
,
385502
(
2010
).
8.
V.
Jirasek
,
T.
Izak
,
M.
Varga
,
O.
Babchenko
, and
A.
Kromka
,
Thin Solid Films
589
,
857
863
(
2015
).
9.
A.
Masood
,
M.
Aslam
,
M. A.
Tamor
, and
T. J.
Potter
,
J. Electrochem. Soc.
138
(
11
),
L67
L68
(
1991
).
10.
S.
Prawer
and
R. J.
Nemanich
,
Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci.
362
(
1824
),
2537
2565
(
2004
).
11.
H.
Windischmann
and
K. J.
Gray
,
Diamond Related Mater.
4
(
5-6
),
837
842
(
1995
).
12.
I.
De Wolf
,
Semicond. Sci. Technol.
11
(
2
),
139
(
1996
).
13.
M.
Nazari
,
B. L.
Hancock
,
J.
Anderson
,
A.
Savage
,
E. L.
Piner
,
S.
Graham
,
F.
Faili
,
S.
Oh
,
D.
Francis
,
D.
Twitchen
, and
M.
Holtz
,
Appl. Phys. Lett.
108
(
3
),
031901
(
2016
).
14.
M.
Holtz
,
J. C.
Carty
, and
W. M.
Duncan
,
Appl. Phys. Lett.
74
,
2008
2010
(
1999
).
15.
K. A.
Christensen
and
M. D.
Morris
,
Appl. Spectrosc.
52
(
9
),
1145
1147
(
1998
).
16.
Y.
Okada
and
Y.
Tokumaru
,
J. Appl. Phys.
56
(
2
),
314
320
(
1984
).
17.
G. A.
Slack
and
S. F.
Bartram
,
J. Appl. Phys.
46
(
1
),
89
98
(
1975
).
18.
P.
Hess
,
J. Appl. Phys.
111
(
5
),
051101
(
2012
).
19.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
19
(
2
),
229
238
(
2010
).
20.
S. M.
Hu
,
J. Appl. Phys.
50
(
7
),
4661
4666
(
1979
).
21.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
(
2
),
985
1009
(
1983
).
22.
E.
Anastassakis
,
A.
Pinczuk
,
E.
Burstein
,
F. H.
Pollak
, and
M.
Cardona
,
Solid State Commun.
8
(
2
),
133
(
1970
).
23.
I.
DeWolf
,
H. E.
Maes
, and
S. K.
Jones
,
J. Appl. Phys.
79
(
9
),
7148
7156
(
1996
).
You do not currently have access to this content.