Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.

1.
H. W.
Du
,
J.
Yang
,
Y. H.
Li
,
F.
Xu
,
J.
Xu
, and
Z. Q.
Ma
,
Appl. Phys. Lett.
106
,
093508
(
2015
).
2.
H. W.
Du
,
J.
Yang
,
Y.
Li
,
M.
Gao
,
S. M.
Chen
,
Z. S.
Yu
,
F.
Xu
, and
Z. Q.
Ma
,
J. Phys. D: Appl. Phys.
48
,
355101
(
2015
).
3.
L. G.
Gerling
,
S.
Mahato
,
A.
Morales-Vilches
,
C.
Voz
,
R.
Alcubilla
, and
J.
Puigdollers
,
Sol. Energy Mater. Sol. Cells
145
,
109
115
(
2016
).
4.
O.
Almora
,
L. G.
Gerling
,
C.
Voz
,
R.
Alcubilla
,
J.
Puigdollers
, and
G. G.
Belmonte
,
Sol. Energy Mater. Sol. Cells
168
,
221
226
(
2017
).
5.
K.
Yao
,
F.
Li
,
Q. Q.
He
,
X. F.
Wang
,
Y. H.
Jiang
,
H. T.
Huang
, and
A. K.-Y.
Jen
,
Nano Energy
40
,
155
162
(
2017
).
6.
D.
Xiao
,
X.
Li
,
D. M.
Wang
,
Q.
Li
,
K.
Shen
, and
D. L.
Wang
,
Sol. Energy Mater. Sol. Cells
169
,
61
67
(
2017
).
7.
D. B.
Patel
,
H.-S.
Kim
,
M.
Patel
,
K. R.
Chauhan
,
J. E.
Park
,
D.
Lim
, and
J.
Kim
,
Appl. Phys. Lett.
109
,
133902
(
2016
).
8.
F.-H.
Hsu
,
N.-F.
Wang
,
Y.-Z.
Tsai
,
C.-Y.
Wu
,
Y.-S.
Cheng
,
M.-H.
Chien
, and
M.-P.
Houng
,
Thin Solid Films
573
,
159
163
(
2014
).
9.
J.-C.
Li
,
X.-Y.
Hou
, and
Q.
Cao
,
J. Appl. Phys.
115
,
164507
(
2014
).
10.
A.
Richter
,
J.
Benick
,
R.
Müller
,
F.
Feldmann
,
C.
Reichel
,
M.
Hermle
, and
S. W.
Glunz
,
Prog. Photovoltaics: Res. Appl.
23
,
1
8
(
2017
).
11.
N.
Bateman
,
P.
Sullivan
,
C.
Reichel
,
J.
Benick
, and
M.
Hermle
,
Energy Procedia
8
,
509
514
(
2011
).
12.
B.
Chen
,
J.
Chen
,
Y.
Shen
,
K.
Ge
,
J.
Guo
,
F.
Li
,
H.
Liu
,
Y.
Xu
, and
Y.
Mai
,
Appl. Phys. Lett.
110
,
133504
(
2017
).
13.
M.
Green
,
Silicon Solar Cells: Advanced Principles & Practice
(
University of New South Wales
,
1995
).
14.
Q.
Li
,
J.
Yang
,
S.
Chen
,
J.
Zou
,
W.
Xie
, and
X.
Zeng
,
Nanoscale Res. Lett.
12
,
506
(
2017
).
15.
K. S.
Rao
and
Y. N.
Mohapatra
,
Appl. Phys. Lett.
104
,
203303
(
2014
).
16.
J.
Leveneur
,
M.
Langlois
,
J.
Kennedy
, and
J. B.
Metson
,
J. Appl. Phys.
122
,
135302
(
2017
).
17.
S. M.
Sze
and
K. K.
Ng
,
Physics of semiconductor devices
(
John Wiley & Sons, Inc.
,
1985
), pp.
134
147
.
18.
H.
Kawazoe
,
H.
Yanagi
,
K.
Ueda
,
H.
Hosono
, and
H.
Kawazoe
,
MRS Bull.
25
,
28
36
(
2000
).
19.
S. D.
Wolf
and
M.
Kondo
,
Appl. Phys. Lett.
91
,
112109
(
2007
).
20.
A. M.
Cowley
and
S. M.
Sze
,
J. Appl. Phys.
36
,
3212
(
1965
).

Supplementary Material

You do not currently have access to this content.