We have studied the hydrogenation of germanene synthesized on Ge2Pt crystals using scanning tunneling microscopy and spectroscopy. The germanene honeycomb lattice is buckled and consists of two hexagonal sub-lattices that are slightly displaced with respect to each other. The hydrogen atoms adsorb exclusively on the Ge atoms of the upward buckled hexagonal sub-lattice. At a hydrogen exposure of about 100 L, the (1 × 1) buckled honeycomb structure of germanene converts to a (2 × 2) structure. Scanning tunneling spectra recorded on this (2 × 2) structure reveal the opening of a bandgap of about 0.2 eV. A fully (half) hydrogenated germanene surface is obtained after an exposure of about 9000 L hydrogen. The hydrogenated germanene, also referred to as germanane, has a sizeable bandgap of about 0.5 eV and is slightly n-type.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
3.
P.
Vogt
,
P.
De Padova
,
C.
Quaresima
,
J.
Avila
,
E.
Frantzeskakis
,
M. C.
Asensio
,
A.
Resta
,
B.
Ealet
, and
G.
Le Lay
,
Phys. Rev. Lett.
108
,
155501
(
2012
).
4.
A.
Fleurence
,
R.
Friedlein
,
T.
Ozaki
,
H.
Kawai
,
Y.
Wang
, and
Y.
Yamada-Takamura
,
Phys. Rev. Lett.
108
,
245501
(
2012
).
5.
L.
Zhang
,
P.
Bampoulis
,
A. N.
Rudenko
,
Q.
Yao
,
A.
van Houselt
,
B.
Poelsema
,
M. I.
Katsnelson
, and
H. J. W.
Zandvliet
,
Phys. Rev. Lett.
116
,
256804
(
2016
).
6.
A.
Acun
,
L.
Zhang
,
P.
Bampoulis
,
M.
Farmanbar
,
M.
Lingenfelder
,
A.
van Houselt
,
A. N.
Rudenko
,
G.
Brocks
,
B.
Poelsema
,
M. I.
Katsnelson
, and
H. J. W.
Zandvliet
,
J. Phys.: Condens. Matter
27
,
443002
(
2015
).
7.
F.-F.
Zhu
,
W.-J.
Chen
,
Y.
Xu
,
C.-L.
Gao
,
D.-D.
Guan
,
C.-H.
Liu
,
D.
Qian
,
S.-C.
Zhang
, and
J.-F.
Jia
,
Nat. Mater.
14
,
1020
(
2015
).
8.
K.
Takeda
and
K.
Shiraishi
,
Phys. Rev. B
50
,
14916
(
1994
).
9.
G. G.
Guzmán-Verri
and
L. C.
Lew Yan Voon
,
Phys. Rev. B
76
,
075131
(
2007
).
10.
S.
Cahangirov
,
M.
Topsakal
,
E.
Aktürk
,
H.
Şahin
, and
S.
Ciraci
,
Phys. Rev. Lett.
102
,
236804
(
2009
).
11.
E.
Bianco
,
S.
Butler
,
S.
Jiang
,
O. D.
Restrepo
,
W.
Windl
, and
J. E.
Golberger
,
ACS Nano
7
,
4414
(
2013
).
12.
L. C.
Lew Yan Voon
,
E.
Sandberg
,
R. S.
Aga
, and
A. A.
Farajin
,
Appl. Phys. Lett.
97
,
163114
(
2010
).
13.
M.
Houssa
,
E.
Scalise
,
K.
Sankaran
,
G.
Pourtois
,
V. V.
Afanasév
, and
A.
Stesmans
,
Appl. Phys. Lett.
98
,
223107
(
2011
).
14.
B. N.
Madhushankar
,
A.
Kaverzin
,
T.
Giousis
,
G.
Pots
,
D.
Gournis
,
P.
Rudolf
,
G. R.
Blake
,
C. H.
van der Wal
, and
B. J.
van Wees
,
2D Mater.
4
,
021009
(
2017
).
15.
H. J. W.
Zandvliet
,
Phys. Rep.
388
,
1
(
2003
).
16.
P.
Bampoulis
,
L.
Zhang
,
A.
Safaei
,
R.
van Gastel
,
B.
Poelsema
, and
H. J. W.
Zandvliet
,
J. Phys.: Condens. Matter
26
,
442001
(
2014
).
17.
L.
Zhang
,
P.
Bampoulis
,
A.
van Houselt
, and
H. J. W.
Zandvliet
,
Appl. Phys. Lett.
107
,
111605
(
2015
).
18.
Y.
Zhang
,
V. W.
Brar
,
F.
Wang
,
C.
Girit
,
Y.
Yayon
,
M.
Panlasigui
,
A.
Zettl
, and
M. F.
Crommie
,
Nat. Phys.
4
,
627
(
2008
).
19.
X.-Q.
Wang
,
H.-D.
Li
, and
J.-T.
Wang
,
Phys. Chem. Chem. Phys.
14
,
3031
(
2012
).
20.
A.
Nijamudheen
,
R.
Bhattacharjee
,
S.
Choudhury
, and
A.
Datta
,
J. Phys. Chem. C
119
,
3802
(
2015
).
21.
J.
Qiu
,
H.
Fu
,
Y.
Xu
,
A. I.
Oreshkin
,
T.
Shao
,
H.
Li
,
S.
Meng
,
L.
Chen
, and
K.
Wu
,
Phys. Rev. Lett.
114
,
126101
(
2015
).
22.
J.
Qiu
,
H.
Fu
,
Y.
Xu
,
Q.
Zhou
,
S.
Meng
,
H.
Li
,
L.
Chen
, and
K.
Wu
,
ACS Nano
9
,
11192
(
2015
).
You do not currently have access to this content.