Inverted bottom-emission organic light emitting diodes (IBOLEDs) have attracted increasing attention due to their exceptional air stability and applications in active-matrix displays. For gaining high IBOLED device efficiencies, it is crucial to develop an effective strategy to make the bottom electrode easy for charge injection and transport. Charge selectivity, blocking the carrier flow towards the unfavourable side, plays an important role in determining charge carrier balance and accordingly radiative recombination efficiency. It is therefore highly desirable to functionalize an interfacial layer which will perform many different tasks simultaneously. Here, we contribute to the hole-blocking ability of the zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite (NC) interlayer with the intention of increasing the OLED device efficiency. With this purpose in mind, a small amount of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) was added as a hole-blocking molecule into the binary blend of ZnO and PEI solution. The device with a ternary ZnO:PEI:TPBi NC interlayer achieved a maximum current efficiency of 38.20 cd A−1 and a power efficiency of 34.29 lm W−1 with a luminance of 123 200 cd m−2, which are high performance parameters for inverted device architecture. The direct comparisons of device performances incorporating ZnO only, ZnO/PEI bilayers, and ZnO:PEI binary NC counterparts were also performed, which shed light on the origin of device performance enhancement.

1.
H.
Sasabe
and
J.
Kido
,
J. Mater. Chem. C
1
,
1699
(
2013
).
2.
D. K.
Flattery
,
C. R.
Fincher
,
D. L.
LeCloux
,
M. B.
O'Regan
, and
J. S.
Richard
,
Information Display
27
(10),
8
–13 (
2011
).
3.
H.
Fukagawa
,
K.
Morii
,
M.
Hasegawa
,
Y.
Arimoto
,
T.
Kamada
,
T.
Shimizu
, and
T.
Yamamoto
,
Appl. Phys. Exp.
7
,
082104
(
2014
).
4.
A.
Nathan
,
G. R.
Chaji
, and
S. J.
Ashtiani
,
J. Display Technol.
1
,
267
(
2005
).
5.
H.
Ma
,
H. L.
Yip
,
F.
Huang
, and
A. K. Y.
Jen
,
Adv. Funct. Mater.
20
,
1371
(
2010
).
6.
T.
Chiba
,
Y. J.
Pu
, and
J.
Kido
,
J. Mater. Chem. C
3
,
11567
11576
(
2015
).
7.
J.
Meyer
,
S.
Hamwi
,
M.
Kröger
,
W.
Kowalsky
,
T.
Riedl
, and
A.
Kahn
,
Adv. Mater.
24
,
5408
(
2012
).
8.
B. R.
Lee
,
H.
Choi
,
J.
SunPark
,
H. J.
Lee
,
S. O.
Kim
,
J. Y.
Kim
, and
M. H.
Song
,
J. Mater. Chem.
21
,
2051
(
2011
).
9.
H.
Choi
,
J. S.
Park
,
E.
Jeong
,
G. H.
Kim
,
B. R.
Lee
,
S. O.
Kim
,
M. H.
Song
,
H. Y.
Woo
, and
J. Y.
Kim
,
Adv. Mater.
23
,
2759
(
2011
).
10.
H.
Kang
,
S.
Hong
,
J.
Lee
, and
K.
Lee
,
Adv. Mater.
24
,
3005
(
2012
).
11.
B. R.
Lee
,
S.
Lee
,
J. H.
Park
,
E. D.
Jung
,
J. C.
Yu
,
Y. S.
Nam
,
J.
Heo
,
J. Y.
Kim
,
B. S.
Kim
, and
M. H.
Song
,
Adv. Mater.
27
,
3553
(
2015
).
12.
X.
Yang
,
R.
Wang
,
C.
Fan
,
G.
Li
,
Z.
Xiong
, and
G. E.
Jabbour
,
Org. Electron.
15
,
2387
(
2014
).
13.
Y. H.
Kim
,
T. H.
Han
,
H.
Cho
,
S. Y.
Min
,
C. L.
Lee
, and
T. W.
Lee
,
Adv. Funct. Mater.
24
,
3808
(
2014
).
14.
S.
Höfle
,
A.
Schienle
,
M.
Bruns
,
U.
Lemmer
, and
A.
Colsmann
,
Adv. Mater.
26
,
2750
(
2014
).
15.
Y.
Zhou
,
C.
Fuentes-Hernandez
,
J.
Shim
,
J.
Meyer
,
A. J.
Giordano
,
H.
Li
,
P.
Winget
,
T.
Papadopoulos
,
H.
Cheun
, and
J.
Kim
,
Science
336
,
327
(
2012
).
16.
X.
Jia
,
N.
Wu
,
J.
Wei
,
L.
Zhang
,
Q.
Luo
,
Z.
Bao
,
Y. Q.
Li
,
Y.
Yang
,
X.
Liu
, and
C. Q.
Ma
,
Org. Electron.
38
,
150
(
2016
).
17.
H. C.
Chen
,
S. W.
Lin
,
J. M.
Jiang
,
Y. W.
Su
, and
K. H.
Wei
,
ACS Appl. Mater. Interfaces
7
,
6273
(
2015
).
18.
R.
Sharma
,
F.
Alam
,
A.
Sharma
,
V.
Dutta
, and
S.
Dhawan
,
J. Mater. Chem. C
2
,
8142
(
2014
).
19.
J. S.
Park
,
J. M.
Lee
,
S. K.
Hwang
,
S. H.
Lee
,
H. J.
Lee
,
B. R.
Lee
,
H. I.
Park
,
J. S.
Kim
,
S.
Yoo
, and
M. H.
Song
,
J. Mater. Chem.
22
,
12695
(
2012
).
20.
R.
Kaçar
,
S. P.
Mucur
,
F.
Yildiz
,
S.
Dabak
, and
E.
Tekin
,
Nanotechnology
28
,
245204
(
2017
).
21.
S. P.
Mucur
,
T. A.
Tumay
,
S.
Birdoğan
,
S. E.
San
, and
E.
Tekin
,
Nano-Struct. Nano-Objects
1
,
7
(
2015
).
22.
S.
Höfle
,
A.
Schienle
,
C.
Bernhard
,
M.
Bruns
,
U.
Lemmer
, and
A.
Colsmann
,
Adv. Mater.
26
,
5155
(
2014
).
23.
K.
Stegmaier
,
A.
Fleissner
,
H.
Janning
,
S.
Yampolskii
,
C.
Melzer
, and
H. V.
Seggern
,
J. Appl. Phys.
110
,
034507
(
2011
).
24.
S.
Tseng
,
Y.
Chen
,
H.
Meng
,
H.
Lai
,
C.
Yeh
,
S.
Horng
,
H.
Liao
, and
C.
Hsu
,
Synth. Met.
159
,
137
(
2009
).
25.
S.
Woo
,
W. H.
Kim
,
H.
Kim
,
Y.
Yi
,
H.
Lyu
, and
Y.
Kim
,
Adv. Energy Mater.
4
,
1301692
(
2014
).
26.
S.
Stolz
,
Y.
Zhang
,
U.
Lemmer
,
G.
Hernandez-Sosa
, and
H.
Aziz
,
ACS Appl. Mater. Interfaces
9
,
2776
(
2017
).
27.
Z.
Zhong
,
Z.
Hu
,
Z.
Jiang
,
J.
Wang
,
Y.
Chen
,
C.
Song
,
S.
Han
,
F.
Huang
,
J.
Peng
, and
J.
Wang
,
Adv. Electron. Mater.
1
,
1400014
(
2015
).
You do not currently have access to this content.