We investigate temperature-dependent spectral linewidths of Bloch oscillations in biased semiconductor superlattices experimentally and theoretically. The spectral linewidth in a GaAs-based superlattice determined by terahertz emission spectroscopy becomes larger gradually as temperature increases from 80 to 320 K. This behavior can be quantitatively reproduced by a microscopic theory of the spectral linewidth that has been extended to treat the phonon scattering and interface roughness scattering of electrons on a Wannier-Stark ladder. A detailed comparison between the terahertz measurements and theoretical simulations reveals that the LO phonon absorption process governs the increase in the spectral linewidth with increasing temperature.

1.
G. H.
Wannier
,
Phys. Rev.
117
,
432
(
1960
).
2.
E. E.
Mendez
,
F.
Agullo-Rueda
, and
J. M.
Hong
,
Phys. Rev. Lett.
60
,
2426
(
1988
).
3.
P.
Voisin
,
J.
Bleuse
,
C.
Bouche
,
S.
Gaillard
,
C.
Alibert
, and
A.
Regreny
,
Phys. Rev. Lett.
61
,
1639
(
1988
).
4.
I.
Bar-Joseph
,
K. W.
Goossen
,
J. M.
Kuo
,
R. F.
Kopf
,
D. A. B.
Miller
, and
D. S.
Chemla
,
Appl. Phys. Lett.
55
,
340
(
1989
).
5.
H.
Schneider
,
K.
Fujiwara
,
H. T.
Grahn
,
K.
von Klitzing
, and
K.
Ploog
,
Appl. Phys. Lett.
56
,
605
(
1990
).
6.
K.
Leo
,
High-Field Transport in Semiconductor Superlattices
(
Springer
,
New York
,
2003
), pp.
1
33,
87–112
.
7.
G.
Bastard
and
R.
Ferreira
,
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers.
312
,
971
(
1991
).
8.
9.
H.
Willenberg
,
G. H.
Döhler
, and
J.
Faist
,
Phys. Rev. B
67
,
085315
(
2003
).
10.
Y.
Shimada
,
K.
Hirakawa
,
M.
Odnoblioudov
, and
K. A.
Chao
,
Phys. Rev. Lett.
90
,
046806
(
2003
).
11.
P. G.
Savvidis
,
B.
Kolasa
,
G.
Lee
, and
S. J.
Allen
,
Phys. Rev. Lett.
92
,
196802
(
2004
).
12.
N.
Sekine
and
K.
Hirakawa
,
Phys. Rev. Lett.
94
,
057408
(
2005
).
13.
T.
Unuma
,
Y.
Ino
,
M.
Kuwata-Gonokami
,
G.
Bastard
, and
K.
Hirakawa
,
Phys. Rev. B
81
,
125329
(
2010
).
14.
T.
Unuma
,
Y.
Ino
,
M.
Kuwata-Gonokami
,
E. M.
Vartiainen
,
K.-E.
Peiponen
, and
K.
Hirakawa
,
Opt. Express
18
,
15853
(
2010
).
15.
A.
Naka
,
K.
Hirakawa
, and
T.
Unuma
,
Appl. Phys. Express
9
,
112101
(
2016
).
16.
F. T.
Vasko
,
Phys. Rev. B
69
,
205309
(
2004
).
17.
T.
Unuma
,
N.
Sekine
, and
K.
Hirakawa
,
Appl. Phys. Lett.
89
,
161913
(
2006
).
18.
A.
Patanè
,
A.
Ignatov
,
L.
Eaves
,
P. C.
Main
,
M.
Henini
,
E.
Schomburg
,
R.
Scheuerer
,
K. F.
Renk
,
V. M.
Ustinov
,
A. E.
Zhukov
, and
A. R.
Kovsh
,
Phys. Rev. B
66
,
075325
(
2002
).
19.
T.
Dekorsy
,
R.
Ott
,
H.
Kurz
, and
K.
Köhler
,
Phys. Rev. B
51
,
17275
(
1995
).
20.
N.
Sekine
,
Y.
Shimada
, and
K.
Hirakawa
,
Appl. Phys. Lett.
83
,
4794
(
2003
).
22.
T.
Ando
,
J. Phys. Soc. Jpn.
44
,
765
(
1978
).
23.
Γop(E) in the numerator of the integrand in Eq. (1) is replaced by ωeFd for the expression of Imσ(ω).
24.
T.
Unuma
,
T.
Takahashi
,
T.
Noda
,
M.
Yoshita
,
H.
Sakaki
,
M.
Baba
, and
H.
Akiyama
,
Appl. Phys. Lett.
78
,
3448
(
2001
).
25.
T.
Unuma
,
M.
Yoshita
,
T.
Noda
,
H.
Sakaki
, and
H.
Akiyama
,
J. Appl. Phys.
93
,
1586
(
2003
).
26.
T.
Unuma
,
S.
Takata
,
Y.
Sakasegawa
,
K.
Hirakawa
, and
A.
Nakamura
,
J. Appl. Phys.
109
,
043506
(
2011
).
You do not currently have access to this content.