Control of fabrication processes for a gate stack structure with a ZnO thin channel layer and an Al2O3 gate insulator has been examined for enhancing the performance of a top-gate ZnO thin film transistor (TFT). The Al2O3/ZnO interface and the ZnO layer are defective just after the Al2O3 layer formation by atomic layer deposition. Post treatments such as plasma oxidation, annealing after the Al2O3 deposition, and gate metal formation (PMA) are promising to improve the interfacial and channel layer qualities drastically. Post-plasma oxidation effectively reduces the interfacial defect density and eliminates Fermi level pinning at the Al2O3/ZnO interface, which is essential for improving the cut-off of the drain current of TFTs. A thermal effect of post-Al2O3 deposition annealing at 350 °C can improve the crystalline quality of the ZnO layer, enhancing the mobility. On the other hand, impacts of post-Al2O3 deposition annealing and PMA need to be optimized because the annealing can also accompany the increase in the shallow-level defect density and the resulting electron concentration, in addition to the reduction in the deep-level defect density. The development of the interfacial control technique has realized the excellent TFT performance with a large ON/OFF ratio, steep subthreshold characteristics, and high field-effect mobility.

1.
A.
Tsukazaki
,
A.
Ohtomo
, and
M.
Kawasaki
,
J. Phys. D: Appl. Phys.
47
,
034003
(
2014
).
2.
D.
Matsubayashi
,
Y.
Asami
,
Y.
Okazaki
,
M.
Kurata
,
S.
Sasagawa
,
S.
Okamoto
,
Y.
Iikubo
,
T.
Sato
,
Y.
Yakubo
,
R.
Honda
,
M.
Tsubuku
,
M.
Fujita
,
T.
Takeuchi
,
Y.
Yamamoto
, and
S.
Yamazaki
, in
IEDM Technical Digest
(
2015
), p.
141
.
3.
H. T.
Ng
,
J.
Han
,
T.
Yamada
,
P.
Nguyen
,
Y. P.
Chen
, and
M.
Meyyappan
,
Nano Lett.
4
,
1247
(
2004
).
4.
M.
Milojevic
,
R.
Contreras-Guerrero
,
M.
Lopez-Lopez
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
95
,
212902
(
2009
).
5.
C. L.
Hinkle
,
A. M.
Sonnet
,
E. M.
Vogel
,
S.
McDonnell
,
G. J.
Hughes
,
M.
Milojevic
,
B.
Lee
,
F. S.
Aguirre-Tostado
,
K. J.
Choi
,
H. C.
Kim
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
92
,
071901
(
2008
).
6.
M.
Milojevic
,
F. S.
Aguirre-Tostado
,
C. L.
Hinkle
,
H. C.
Kim
,
E. M.
Vogel
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
93
,
202902
(
2008
).
7.
R.
Zhang
,
T.
Iwasaki
,
N.
Taoka
,
M.
Takenaka
, and
S.
Takagi
,
Appl. Phys. Lett.
98
,
112902
(
2011
).
8.
K.
Kato
,
S.
Shibayama
,
M.
Sakashita
,
W.
Takeuchi
,
N.
Taoka
,
O.
Nakatsuka
, and
S.
Zaima
,
Jpn. J. Appl. Phys., Part 1
52
,
04CA08
(
2013
).
9.
S. B.
Zhang
,
S.-H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
63
,
075205
(
2001
).
10.
K.
Kato
,
H.
Matsui
,
H.
Tabata
,
M.
Takenaka
, and
S.
Takagi
, in
Extended Abstract of International Conference on Solid State Device and Materials
(
2017
), p.
223
.
11.
B.
Lin
and
Z.
Fu
,
Appl. Phys. Lett.
79
,
943
(
2001
).
12.
13.
S. A. M.
Lima
,
F. A.
Sigoli
,
M.
Jafelicci
, Jr.
, and
M. R.
Davolos
,
Int. J. Inorg. Mater.
3
,
749
(
2001
).
14.
K.
Ellmera
and
R.
Mientusb
,
Thin Solid Films
516
,
4620
(
2008
).
15.
T.
Hirao
,
M.
Furuta
,
H.
Furuta
,
T.
Matsuda
,
T.
Hiramatsu
,
H.
Hokari
,
M.
Yoshida
,
H.
Ishii
, and
M.
Kakegawa
,
J. Sci. Inf. Disp.
15
,
17
(
2007
).
16.
Y. V.
Li
,
J. I.
Ramirez
,
K. G.
Sun
, and
T. N.
Jackson
,
IEEE Elec. Dev. Lett.
34
,
891
(
2013
).
You do not currently have access to this content.