Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.

1.
G.
Zhao
,
X.
Zhang
,
T. J.
Lu
, and
F.
Xu
,
Adv. Funct. Mater.
25
,
5726
(
2015
).
2.
M.
Kitsara
,
O.
Agbulut
,
D.
Kontziampasis
,
Y.
Chen
, and
P.
Menasché
,
Acta Biomater.
48
,
20
(
2017
).
3.
S. J.
Hollister
,
Nat. Mater.
4
,
518
(
2005
).
4.
G.
Kim
and
W.
Kim
,
Appl. Phys. Lett.
88
,
233101
(
2006
).
5.
D.
Liang
,
B. S.
Hsiao
, and
B.
Chu
,
Adv. Drug Delivery Rev.
59
,
1392
(
2007
).
6.
P.
Mellado
,
H. A.
McIlwee
,
M. R.
Badrossamay
,
J. A.
Goss
,
L.
Mahadevan
, and
K. K.
Parker
,
Appl. Phys. Lett.
99
,
203107
(
2011
).
7.
C. S.
Ong
,
X.
Zhou
,
C. Y.
Huang
,
T.
Fukunishi
,
H.
Zhang
, and
N.
Hibino
,
Expert Rev. Med. Devices
14
,
383
(
2017
).
8.
S.
de Valence
,
J.-C.
Tille
,
D.
Mugnai
,
W.
Mrowczynski
,
R.
Gurny
,
M.
Möller
, and
B. H.
Walpoth
,
Biomaterials
33
,
38
(
2012
).
9.
Y.
Wu
,
Y.
Qin
,
Z.
Wang
,
J.
Wang
,
C.
Zhang
,
C.
Li
, and
D.
Kong
, “
The regeneration of macro-porous electrospun poly(ε-caprolactone) vascular graft during long-term in situ implantation
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
(published online).
10.
Y.
Yao
,
J.
Wang
,
Y.
Cui
,
R.
Xu
,
Z.
Wang
,
J.
Zhang
,
K.
Wang
,
Y.
Li
,
Q.
Zhao
, and
D.
Kong
,
Acta Biomater.
10
,
2739
(
2014
).
11.
Y.
Pan
,
X.
Zhou
,
Y.
Wei
,
Q.
Zhang
,
T.
Wang
,
M.
Zhu
,
W.
Li
,
R.
Huang
,
R.
Liu
,
J.
Chen
,
G.
Fan
,
K.
Wang
,
D.
Kong
, and
Q.
Zhao
,
Sci. Rep.
7
,
3615
(
2017
).
12.
P.
Xiang
,
S.-S.
Wang
,
M.
He
,
Y.-H.
Han
,
Z.-H.
Zhou
,
D.-L.
Chen
,
M.
Li
, and
L. Q.
Ma
,
Colloids Surf., B
163
,
19
(
2018
).
13.
W.
Mattanavee
,
O.
Suwantong
,
S.
Puthong
,
T.
Bunaprasert
,
V. P.
Hoven
, and
P.
Supaphol
,
ACS Appl. Mater. Interfaces
1
,
1076
(
2009
).
14.
L. V.
Antonova
,
V. V.
Sevostyanova
,
A. G.
Kutikhin
,
A. V.
Mironov
,
E. O.
Krivkina
,
A. R.
Shabaev
,
V. G.
Matveeva
,
E. A.
Velikanova
,
E. A.
Sergeeva
,
A. Y.
Burago
,
G. Y.
Vasyukov
,
T. V.
Glushkova
,
Y. A.
Kudryavtseva
,
O. L.
Barbarash
, and
L. S.
Barbarash
,
Front. Pharmacol.
7
,
07
(
2016
).
15.
S.
de Valence
,
J.-C.
Tille
,
C.
Chaabane
,
R.
Gurny
,
M.-L.
Bochaton-Piallat
,
B. H.
Walpoth
, and
M.
Möller
,
Eur. J. Pharm. Biopharm.
85
,
78
(
2013
).
16.
N.
Recek
,
M.
Resnik
,
H.
Motaln
,
T.
Lah-Turnšek
,
R.
Augustine
,
N.
Kalarikkal
,
S.
Thomas
, and
M.
Mozetič
,
Int. J. Polym. Sci.
2016
,
1
(
2016
).
17.
R.
Ion
,
C.
Luculescu
,
A.
Cimpean
,
P.
Marx
,
D.-M.
Gordin
, and
T.
Gloriant
,
Mater. Sci. Eng., C
62
,
686
(
2016
).
18.
V.-H.
Pham
,
S.-H.
Jun
,
H.-E.
Kim
, and
Y.-H.
Koh
,
Appl. Surf. Sci.
258
,
2864
(
2012
).
19.
I.
Dion
,
F.
Rouais
,
L.
Trut
,
C.
Baquey
,
J. R.
Monties
, and
P.
Havlik
,
Biomaterials
14
,
169
(
1993
).
20.
E. N.
Bolbasov
,
P. V.
Maryin
,
K. S.
Stankevich
,
A. I.
Kozelskaya
,
E. V.
Shesterikov
,
Y. I.
Khodyrevskaya
,
M. V.
Nasonova
,
D. K.
Shishkova
,
Y. A.
Kudryavtseva
,
Y. G.
Anissimov
, and
S. I.
Tverdokhlebov
,
Colloids Surf., B
162
,
43
(
2018
).
21.
C.-H.
Ng
,
N.
Rao
,
W.-C.
Law
,
G.
Xu
,
T.-L.
Cheung
,
F. T.
Cheng
,
X.
Wang
, and
H.-C.
Man
,
Surf. Coat. Technol.
309
,
59
(
2017
).
22.
K. W. K.
Yeung
,
R. W. Y.
Poon
,
P. K.
Chu
,
C. Y.
Chung
,
X. Y.
Liu
,
W. W.
Lu
,
D.
Chan
,
S. C. W.
Chan
,
K. D. K.
Luk
, and
K. M. C.
Cheung
,
J. Biomed. Mater. Res., Part A
82A
,
403
(
2007
).
23.
L.
von Fieandt
,
T.
Larsson
,
E.
Lindahl
,
O.
Bäcke
, and
M.
Boman
,
Surf. Coat. Technol.
334
,
373
(
2018
).
24.
M. K.
Samani
,
X. Z.
Ding
,
N.
Khosravian
,
B.
Amin-Ahmadi
,
Y.
Yi
,
G.
Chen
,
E. C.
Neyts
,
A.
Bogaerts
, and
B. K.
Tay
,
Thin Solid Films
578
,
133
(
2015
).
25.
H.
Guo
,
W.
Chen
,
Y.
Shan
,
W.
Wang
,
Z.
Zhang
, and
J.
Jia
,
Appl. Surf. Sci.
357
,
473
(
2015
).
26.
P.
Kelly
and
R.
Arnell
,
Vacuum
56
,
159
(
2000
).
27.
H.
Kersten
,
H.
Deutsch
,
H.
Steffen
,
G. M. W.
Kroesen
, and
R.
Hippler
,
Vacuum
63
,
385
(
2001
).
28.
S. I.
Goreninskii
,
N. N.
Bogomolova
,
A. I.
Malchikhina
,
A. S.
Golovkin
,
E. N.
Bolbasov
,
T. V.
Safronova
,
V. I.
Putlyaev
, and
S. I.
Tverdokhlebov
,
Bionanoscience
7
,
50
(
2017
).
29.
E. N.
Bolbasov
,
L. V.
Antonova
,
K. S.
Stankevich
,
A.
Ashrafov
,
V. G.
Matveeva
,
E. A.
Velikanova
,
Y. I.
Khodyrevskaya
,
Y. A.
Kudryavtseva
,
Y. G.
Anissimov
,
S. I.
Tverdokhlebov
, and
L. S.
Barbarash
,
Appl. Surf. Sci.
398
,
63
(
2017
).
30.
B.
Baudin
,
A.
Bruneel
,
N.
Bosselut
, and
M.
Vaubourdolle
,
Nat. Protoc.
2
,
481
(
2007
).
31.
J. O.
Hollinger
,
An Introduction to Biomaterials
(
CRC Press
,
2011
).
32.
R.
Morent
,
N.
De Geyter
,
M.
Trentesaux
,
L.
Gengembre
,
P.
Dubruel
,
C.
Leys
, and
E.
Payen
,
Plasma Chem. Plasma Process.
30
,
525
(
2010
).
33.
A.
Hasan
,
A.
Memic
,
N.
Annabi
,
M.
Hossain
,
A.
Paul
,
M. R.
Dokmeci
,
F.
Dehghani
, and
A.
Khademhosseini
,
Acta Biomater.
10
,
11
(
2014
).
34.
L.
Chen
,
C.
Yan
, and
Z.
Zheng
,
Mater. Today
21
,
38
(
2017
).
You do not currently have access to this content.