Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75–170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies are found at the surface on annealing, which are reflected in the bulk sample by a small change in the unit cell volume. The significant decrease in the dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through the annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.

1.
F. M. M.
Pereira
,
C. A. R.
Junior
,
M. R. P.
Santos
,
R. S. T. M.
Sohn
,
F. N. A.
Freire
,
J. M.
Sasaki
,
J. A. C.
de Paiva
, and
A. S. B.
Sombra
,
J. Mater. Sci.: Mater. Electron.
19
(
7
),
627
(
2008
).
2.
T.
Nakamura
,
J. Appl. Phys.
88
(
1
),
348
(
2000
).
3.
M.
Sugimoto
,
J. Am. Ceram. Soc.
82
(
2
),
269
(
1999
).
4.
H.
Khanduri
,
M.
Chandra Dimri
,
H.
Kooskora
,
I.
Heinmaa
,
G.
Viola
,
H.
Ning
,
M. J.
Reece
,
J.
Krustok
, and
R.
Stern
,
J. Appl. Phys.
112
(
7
),
073903
(
2012
).
5.
R. C.
Pullar
,
Prog. Mater. Sci.
57
(
7
),
1191
(
2012
).
6.
M.
Shalaby
,
M.
Peccianti
,
Y.
Ozturk
, and
R.
Morandotti
,
Nat. Commun.
4
,
1558
(
2013
).
7.
K.
Ahn
,
B.
Ryu
,
D.
Korolev
, and
Y.
Jae Kang
,
Appl. Phys. Lett.
103
(
24
),
242417
(
2013
).
8.
N.
Rezlescu
and
E.
Rezlescu
,
Solid State Commun.
14
(
1
),
69
(
1974
).
9.
M. J.
Iqbal
and
M. N.
Ashiq
,
Chem. Eng. J.
136
(
2
),
383
(
2008
).
10.
X.
Liu
,
W.
Zhong
,
S.
Yang
,
Z.
Yu
,
B.
Gu
, and
Y.
Du
,
J. Magn. Magn. Mater.
238
(
2–3
),
207
(
2002
).
11.
A.
Singh
,
S. B.
Narang
,
K.
Singh
,
P.
Sharma
, and
O. P.
Pandey
,
Eur. Phys. J.: Appl. Phys.
33
(
03
),
189
(
2006
).
12.
S.
Bindra Narang
,
A.
Singh
, and
K.
Singh
,
J. Ceram. Process Res.
8
(
5
),
347
(
2007
).
13.
F. M. M.
Pereira
and
A. S. B.
Sombra
,
Solid State Phenom.
202
,
1
(
2013
).
14.
F. J.
Berry
,
J. F.
Marco
,
C. B.
Ponton
, and
K. R.
Whittle
,
J. Mater. Sci. Lett.
20
(
5
),
431
(
2001
).
15.
C.
Doroftei
,
E.
Rezlescu
,
P.
Dorin Popa
, and
N.
Rezlescu
,
Cryst. Res. Technol.
41
(
11
),
1112
(
2006
).
16.
A. C.
Larson
and
R. B.
Von Dreele
,
Los Alamos National Laboratory Report No. LAUR 86-748
, Los Alamos National Laboratory, Los Alamos, NM,
1986
.
17.
Z. F.
Zi
,
Y. P.
Sun
,
X. B.
Zhu
,
Z. R.
Yang
, and
W. H.
Song
,
J. Magn. Magn. Mater.
320
(
21
),
2746
(
2008
).
18.
R.
Hesse
,
P.
Streubel
, and
R.
Szargan
,
Surf. Interface Anal.
39
(
5
),
381
(
2007
).
19.
B.
Yang
,
R. J.
Wylde
,
D. H.
Martin
,
P.
Goy
,
R. S.
Donnan
, and
S.
Caroopen
,
IEEE Trans. Microwave Theory Tech.
58
(
12
),
3587
(
2010
).
20.
J.
Muller
and
A.
Collomb
,
J. Magn. Magn. Mater.
103
(
1-2
),
194
(
1992
).
21.
H.
Luo
,
B. K.
Rai
,
S. R.
Mishra
,
V. V.
Nguyen
, and
J. P.
Liu
,
J. Magn. Magn. Mater.
324
(
17
),
2602
(
2012
).
22.
R. D.
Shannon
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
32
(
5
),
751
(
1976
).
23.
B.
Yu
,
M.
Li
,
J.
Liu
,
D.
Guo
,
L.
Pei
, and
X.
Zhao
,
J. Phys. D: Appl. Phys.
41
(
6
),
065003
(
2008
).
24.
T.
Yamashita
and
P.
Hayes
,
Appl. Surf. Sci.
254
(
8
),
2441
(
2008
).
25.
C.
Yu
,
Y.
Zeng
,
B.
Yang
,
R.
Donnan
,
J.
Huang
,
Z.
Xiong
,
A.
Mahajan
,
B.
Shi
,
H.
Ye
, and
R.
Binions
,
Sci. Rep.
7
(
1
),
6639
(
2017
).
26.
K.
Iwauchi
and
Y.
Ikeda
,
Phys. Status Solidi A
93
(
1
),
309
(
1986
).

Supplementary Material

You do not currently have access to this content.