The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (∼0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm−3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

1.
I.
Zutic
,
J.
Fabian
, and
S.
Das Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
,
323
410
(
2004
).
2.
Z. G.
Yu
, “
Spin-orbit coupling and its effects in organic solids
,”
Phys. Rev. B
85
,
115201
(
2012
).
3.
H.
Malissa
,
M.
Kavand
,
D. P.
Waters
,
K. J.
van Schooten
,
P. L.
Burn
,
Z. V.
Vardeny
,
B.
Saam
,
J. M.
Lupton
, and
C.
Boehme
, “
Organic electronics. Room-temperature coupling between electrical current and nuclear spins in OLEDs
,”
Science
345
(
6203
),
1487
1490
(
2014
).
4.
V. A.
Dediu
,
L. E.
Hueso
,
I.
Bergenti
, and
C.
Taliani
, “
Spin routes in organic semiconductors
,”
Nat. Mater.
8
(
9
),
707
716
(
2009
).
5.
S.
Sanvito
, “
Molecular spintronics
,”
Chem. Soc. Rev.
40
(
6
),
3336
3355
(
2011
).
6.
D.
Sun
,
E.
Ehrenfreund
, and
Z. V.
Vardeny
, “
The first decade of organic spintronics research
,”
Chem. Commun.
50
(
15
),
1781
1793
(
2014
).
7.
A.
Riminucci
,
M.
Prezioso
, and
P.
Graziosi
, “
Perspectives on organic spintronics
,” in
Organic Electronics: Emerging Concepts and Technologies
, edited by
F.
Cicoira
and
C.
Santato
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2013
), pp.
381
400
.
8.
J.
Jiang
,
J.
Pearson
, and
S.
Bader
, “
Absence of spin transport in the organic semiconductor Alq3
,”
Phys. Rev. B
77
(
3
),
35303
(
2008
).
9.
L. E.
Hueso
,
I.
Bergenti
,
A.
Riminucci
,
Y. Q.
Zhan
, and
V.
Dediu
, “
Multipurpose magnetic organic hybrid devices
,”
Adv. Mater.
19
(
18
),
2639
2642
(
2007
).
10.
M.
Prezioso
,
A.
Riminucci
,
I.
Bergenti
,
P.
Graziosi
,
D.
Brunel
, and
V. A.
Dediu
, “
Electrically programmable magnetoresistance in multifunctional organic-based spin valve devices
,”
Adv. Mater.
23
(
11
),
1371
1375
(
2011
).
11.
M.
Prezioso
,
A.
Riminucci
,
P.
Graziosi
,
I.
Bergenti
,
R.
Rakshit
,
R.
Cecchini
,
A.
Vianelli
,
F.
Borgatti
,
N.
Haag
,
M.
Willis
,
A. J.
Drew
,
W. P.
Gillin
, and
V. A.
Dediu
, “
A single-device universal logic gate based on a magnetically enhanced memristor
,”
Adv. Mater.
25
(
4
)
534
538
(
2013
).
12.
Y. Q.
Zhan
,
X. J.
Liu
,
E.
Carlegrim
,
F. H.
Li
,
I.
Bergenti
,
P.
Graziosi
,
V.
Dediu
, and
M.
Fahlman
, “
The role of aluminum oxide buffer layer in organic spin-valves performance
,”
Appl. Phys. Lett.
94
(
5
),
53301
(
2009
).
13.
Y.
Zhan
,
I.
Bergenti
,
L.
Hueso
,
V.
Dediu
,
M.
de Jong
, and
Z.
Li
, “
Alignment of energy levels at the Alq3∕La0.7Sr0.3MnO3 interface for organic spintronic devices
,”
Phys. Rev. B
76
(
4
),
045406
(
2007
).
14.
C.
Barraud
,
P.
Seneor
,
R.
Mattana
,
S.
Fusil
,
K.
Bouzehouane
,
C.
Deranlot
,
P.
Graziosi
,
L.
Hueso
,
I.
Bergenti
,
V.
Dediu
,
F.
Petroff
, and
A.
Fert
, “
Unravelling the role of the interface for spin injection into organic semiconductors
,”
Nat. Phys.
6
(
8
),
615
620
(
2010
).
15.
S.
Majumdar
,
K.
Grochowska
,
M.
Sawczak
,
G.
Śliwiński
,
H.
Huhtinen
,
J.
Dahl
,
M.
Tuominen
,
P.
Laukkanen
, and
H. S.
Majumdar
, “
Interfacial properties of organic semiconductor-inorganic magnetic oxide hybrid spintronic systems fabricated using pulsed laser deposition
,”
ACS Appl. Mater. Interfaces
7
(
40
),
22228
22237
(
2015
).
16.
A. K.
Singh
and
J.
Eom
, “
Negative magnetoresistance in a vertical single-layer graphene spin valve at room temperature
,”
ACS Appl. Mater. Interfaces
6
(
4
),
2493
2496
(
2014
).
17.
X.
Zhang
,
Q.
Ma
,
K.
Suzuki
,
A.
Sugihara
,
G. W.
Qin
,
T.
Miyazaki
, and
S.
Mizukami
, “
Magnetoresistance effect in rubrene-based spin valves at room temperature
,”
ACS Appl. Mater. Interfaces
7
(
8
),
4685
4692
(
2015
).
18.
F.
Li
,
T.
Li
, and
X.
Guo
, “
Vertical graphene spin valves based on La2/3Sr1/3MnO3 electrodes
,”
ACS Appl. Mater. Interfaces
6
(
2
),
1187
1192
(
2014
).
19.
F.
Li
, “
Effect of substrate temperature on the spin transport properties in C60-based spin valves
,”
ACS Appl. Mater. Interfaces
5
(
16
),
8099
8104
(
2013
).
20.
P. P.
Ruden
, “
Theory of spin injection into conjugated organic semiconductors
,”
J. Appl. Phys.
95
(
9
),
4898
(
2004
).
21.
P.
Bobbert
,
W.
Wagemans
,
F.
van Oost
,
B.
Koopmans
, and
M.
Wohlgenannt
, “
Theory for Spin Diffusion in Disordered Organic Semiconductors
,”
Phys. Rev. Lett.
102
(
15
),
156604
(
2009
).
22.
M.
Cinchetti
,
K.
Heimer
,
J.-P.
Wüstenberg
,
O.
Andreyev
,
M.
Bauer
,
S.
Lach
,
C.
Ziegler
,
Y.
Gao
, and
M.
Aeschlimann
, “
Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission
,”
Nat. Mater.
8
(
2
),
115
119
(
2009
).
23.
A. J.
Drew
,
J.
Hoppler
,
L.
Schulz
,
F. L.
Pratt
,
P.
Desai
,
P.
Shakya
,
T.
Kreouzis
,
W. P.
Gillin
,
A.
Suter
,
N. A.
Morley
,
V. K.
Malik
,
A.
Dubroka
,
K. W.
Kim
,
H.
Bouyanfif
,
F.
Bourqui
,
C.
Bernhard
,
R.
Scheuermann
,
G. J.
Nieuwenhuys
,
T.
Prokscha
, and
E.
Morenzoni
, “
Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation
,”
Nat. Mater.
8
(
2
),
109
114
(
2009
).
24.
F. G.
Monzon
,
H. X.
Tang
, and
M. L.
Roukes
, “
Magnetoelectronic phenomena at a ferromagnet-semiconductor interface
,”
Phys. Rev. Lett.
84
(
21
),
5022
(
2000
).
25.
F. J.
Jedema
,
H. B.
Heersche
,
A. T.
Filip
,
J. J. A.
Baselmans
, and
B. J.
van Wees
, “
Electrical detection of spin precession in a metallic mesoscopic spin valve
,”
Nature
416
(
6882
),
713
716
(
2002
).
26.
I.
Appelbaum
,
B.
Huang
, and
D. J.
Monsma
, “
Electronic measurement and control of spin transport in silicon
,”
Nature
447
(
7142
),
295
298
(
2007
).
27.
A.
Riminucci
,
M.
Prezioso
,
C.
Pernechele
,
P.
Graziosi
,
I.
Bergenti
,
R.
Cecchini
,
M.
Calbucci
,
M.
Solzi
, and
V. A.
Dediu
, “
Hanle effect missing in a prototypical organic spintronic device
,”
Appl. Phys. Lett.
102
,
92407
(
2013
).
28.
M.
Grünewald
,
R.
Göckeritz
,
N.
Homonnay
,
F.
Würthner
,
L. W.
Molenkamp
, and
G.
Schmidt
, “
Vertical organic spin valves in perpendicular magnetic fields
,”
Phys. Rev. B
88
(
8
),
85319
(
2013
).
29.
S. W.
Jiang
,
S.
Liu
,
P.
Wang
,
Z. Z.
Luan
,
X. D.
Tao
,
H. F.
Ding
, and
D.
Wu
, “
Exchange-dominated pure spin current transport in Alq3 molecules
,”
Phys. Rev. Lett.
115
(
8
),
86601
(
2015
).
30.
C. W.
Tang
and
S. A.
Vanslyke
, “
Organic electroluminescent diodes
,”
Appl. Phys. Lett.
51
(
12
),
913
915
(
1987
).
31.
P. E.
Burrows
,
Z.
Shen
,
V.
Bulovic
,
D. M.
McCarty
,
S. R.
Forrest
,
J. A.
Cronin
, and
M. E.
Thompson
, “
Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices
,”
J. Appl. Phys.
79
(
10
),
7991
8006
(
1996
).
32.
M.
Baldo
and
S.
Forrest
, “
Interface-limited injection in amorphous organic semiconductors
,”
Phys. Rev. B
64
(
8
),
085201
(
2001
).
33.
W.
Brütting
,
S.
Berleb
, and
A. G.
Mückl
, “
Device physics of organic light-emitting diodes based on molecular materials
,”
Org. Electron.
2
(
1
),
1
36
(
2001
).
34.
G. G.
Malliaras
,
Y.
Shen
,
D. H.
Dunlap
,
H.
Murata
, and
Z. H.
Kafafi
, “
Nondispersive electron transport in Alq3
,”
Appl. Phys. Lett.
79
(
16
),
2582
(
2001
).
35.
A.
Drew
,
F.
Pratt
,
J.
Hoppler
,
L.
Schulz
,
V.
Malik-Kumar
,
N.
Morley
,
P.
Desai
,
P.
Shakya
,
T.
Kreouzis
,
W.
Gillin
,
K.
Kim
,
A.
Dubroka
, and
R.
Scheuermann
, “
Intrinsic mobility limit for Anisotropic Electron Transport in Alq3
,”
Phys. Rev. Lett.
100
(
11
),
116601
(
2008
).
36.
J. J.
Kwiatkowski
,
J.
Nelson
,
H.
Li
,
J. L.
Bredas
,
W.
Wanzel
, and
C.
Lennartz
, “
Simulating charge transport in tris(8-hydroxyquinoline) aluminium (Alq3)
,”
Phys. Chem. Chem. Phys.
10
,
1852
1858
(
2008
).
37.
Z. G.
Yu
, “
Suppression of the Hanle effect in organic spintronic devices
,”
Phys. Rev. Lett.
111
(July),
16601
(
2013
).
38.
Z. G.
Yu
, “
Impurity-band transport in organic spin valves
,”
Nat. Commun.
5
,
4842
(
2014
).
39.
G.
Schmidt
,
D.
Ferrand
,
L.
Molenkamp
,
A.
Filip
, and
B.
van Wees
, “
Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor
,”
Phys. Rev. B
62
(
8
),
R4790
R4793
(
2000
).
40.
P.
Graziosi
,
M.
Prezioso
,
A.
Gambardella
,
C.
Kitts
,
R. K.
Rakshit
,
A.
Riminucci
,
I.
Bergenti
,
F.
Borgatti
,
C.
Pernechele
,
M.
Solzi
,
D.
Pullini
,
D.
Busquets-mataix
, and
V. A.
Dediu
, “
Conditions for the growth of smooth La0.7 Sr0.3MnO3 thin films by pulsed electron ablation
,”
Thin Solid Films
534
,
83
89
(
2013
).
41.
F.
Borgatti
,
I.
Bergenti
,
F.
Bona
,
V.
Dediu
,
A.
Fondacaro
,
S.
Huotari
,
G.
Monaco
,
D. A.
MacLaren
,
J. N.
Chapman
, and
G.
Panaccione
, “
Understanding the role of tunneling barriers in organic spin valves by hard x-ray photoelectron spectroscopy
,”
Appl. Phys. Lett.
96
(
4
),
43306
(
2010
).
42.
A. A.
Sidorenko
,
C.
Pernechele
,
P.
Lupo
,
M.
Ghidini
,
M.
Solzi
,
R. D.
Renzi
,
I.
Bergenti
,
P.
Graziosi
,
V.
Dediu
,
L.
Hueso
, and
A. T.
Hindmarch
, “
Interface effects on an ultrathin Co film in multilayers based on the organic semiconductor Alq[sub 3]
,”
Appl. Phys. Lett.
97
(
16
),
162509
(
2010
).
43.
J.
Rybicki
,
R.
Lin
,
F.
Wang
,
M.
Wohlgenannt
,
C.
He
,
T.
Sanders
, and
Y.
Suzuki
, “
Tuning the performance of organic spintronic devices using X-ray generated traps
,”
Phys. Rev. Lett.
109
(
7
),
076603
(
2012
).
44.
W.
Wagemans
,
P.
Janssen
,
A. J.
Schellekens
,
F. L.
Bloom
,
P. A.
Bobbert
, and
B.
Koopmans
, “
The many faces of organic magnetoresistance
,”
Spin
1
(
1
),
93
108
(
2011
).
45.
H.
Gu
,
X.
Zhang
,
H.
Wei
,
Y.
Huang
,
S.
Wei
, and
Z.
Guo
, “
An overview of the magnetoresistance phenomenon in molecular systems
,”
Chem. Soc. Rev.
42
(
13
),
5907
(
2013
).
46.
E. H.
Lee
,
H. M.
Yoon
,
W. K.
Han
,
T. W.
Kim
,
J. H.
Ahn
,
K. U.
Jang
, and
J. W.
Hong
, “
Built-in voltage in Alq3 based organic light-emitting diodes incorporating PEDOT:PSS and LiF layer
,”
Mol. Cryst. Liq. Cryst.
491
,
145
151
(
2008
).
47.
Y.
Zhan
,
M.
de Jong
,
F.
Li
,
V.
Dediu
,
M.
Fahlman
, and
W.
Salaneck
, “
Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices
,”
Phys. Rev. B
78
(
4
),
045208
(
2008
).
48.
I.
Bergenti
,
F.
Borgatti
,
M.
Calbucci
,
R.
Riminucci, Alberto Cecchini
,
P.
Graziosi
,
D.
MacLaren
,
A.
Giglia
,
J. P.
Rueff
,
D.
Céolin
,
L.
Pasquali
, and
V.
Dediu
, “
Oxygen impurities link bistability and magnetoresistance in organic spin valves
,”
Adv. Electron. Mater.
10
,
8132
8140
(
2018
).
49.
J.
Kalinowski
,
J.
Szmytkowski
, and
W.
Stampor
, “
Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3
,”
Chem. Phys. Lett.
378
(
3–4
),
380
387
(
2003
).
50.
P.
Bobbert
,
T.
Nguyen
,
F.
van Oost
,
B.
Koopmans
, and
M.
Wohlgenannt
, “
Bipolaron mechanism for organic magnetoresistance
,”
Phys. Rev. Lett.
99
(
21
),
216801
(
2007
).
51.
S.
Zhang
,
N. J.
Rolfe
,
P.
Desai
,
P.
Shakya
,
A. J.
Drew
,
T.
Kreouzis
, and
W. P.
Gillin
, “
Modeling of positive and negative organic magnetoresistance in organic light-emitting diodes
,”
Phys. Rev. B
86
(
7
),
075206
(
2012
).

Supplementary Material

You do not currently have access to this content.