Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.

1.
Semiconductor Industry Association,
International Technology Roadmap for Semiconductor 2.0, 2015 edition, available at: https://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/.
2.
R. S.
Prasher
and
C.-P.
Chiu
,
Materials for Advanced Packaging
(
Springer
,
2017
), pp.
511
535
.
3.
M.
Liu
and
W.
Yin
, in
International Symposium on Microelectronics
(
International Microelectronics Assembly and Packaging Society
,
2013
), pp.
265
270
.
4.
Z.
Zhang
,
P.
Zhu
, and
C. P.
Wong
,
Materials for Advanced Packaging
(
Springer
,
2017
), pp.
331
371
.
5.
I.
Seshadri
,
G. L.
Esquenazi
,
T.
Borca‐Tasciuc
,
P.
Keblinski
, and
G.
Ramanath
,
Adv. Mater. Interfaces
2
,
1500186
(
2015
).
6.
I.
Seshadri
,
G. L.
Esquenazi
,
T.
Cardinal
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
Nanotechnology
27
,
175601
(
2016
).
7.
S.
Yu
,
P.
Hing
, and
X.
Hu.
, “
Thermal conductivity of polystyrene-aluminum nitride composite
,”
Composites A: Appl. Sci. Manuf.
33
,
289
92
(
2002
).
8.
F.
Sarvar
,
D. C.
Whalley
, and
P. P.
Conway
, in
2006 1st Electronic System-Integration Technology Conference
(IEEE,
2006
), Vol.
2
, p.
1292
10.
Y.
Xu
,
X.
Luo
, and
D. D. L
,
Chung
,
J. Electron. Packag.
122
(
2
),
128
131
(
2000
), available at http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=1405882.
11.
Z.
Lin
,
A.
Mcnamara
,
Y.
Liu
,
K.
Moon
, and
C.-P.
Wong
,
Compos. Sci. Technol.
90
,
123
(
2014
).
12.
S. H.
Jeong
,
S.
Chen
,
J.
Huo
,
E. K.
Gamstedt
,
J.
Liu
,
S.-L.
Zhang
,
Z.-B.
Zhang
,
K.
Hjort
, and
Z.
Wu
,
Sci. Rep.
5
,
18257
(
2015
).
13.
M. D.
Bartlett
,
N.
Kazem
,
M. J.
Powell-Palm
,
X.
Huang
,
W.
Sun
,
J. A.
Malen
, and
C.
Majidi
,
Proc. Natl. Acad. Sci.
114
,
2143
(
2017
).
14.
M. I.
Ralphs
,
N.
Kemme
,
P. B.
Vartak
,
E.
Joseph
,
S.
Tipnis
,
S.
Turnage
,
K. N.
Solanki
,
R. Y.
Wang
, and
K.
Rykaczewski
,
ACS Appl. Mater. Interfaces
10
,
2083
(
2018
).
15.
H.
Chen
,
V. V.
Ginzburg
,
J.
Yang
,
Y.
Yang
,
W.
Liu
,
Y.
Huang
,
L.
Du
, and
B.
Chen
,
Prog. Polym. Sci.
59
,
41
(
2016
).
16.
S.
Kumar
,
M. A.
Alam
, and
J. Y.
Murthy
,
Appl. Phys. Lett.
90
,
104105
(
2007
).
17.
K.
Pashayi
,
H. R.
Fard
,
F.
Lai
,
S.
Iruvanti
,
J.
Plawsky
, and
T.
Borca-Tasciuc
,
J. Appl. Phys.
111
,
104310
(
2012
).
18.
K.
Pashayi
,
H. R.
Fard
,
F.
Lai
,
S.
Iruvanti
,
J.
Plawsky
, and
T.
Borca-Tasciuc
,
Nanoscale
6
,
4292
(
2014
).
19.
Z.
Gu
,
H.
Ye
,
D. H.
Gracias
, and
D.
Gracias
,
JOM
57
,
60
(
2005
).
20.
Z.
Gu
,
H.
Ye
,
D.
Smirnova
,
D.
Small
, and
D. H.
Gracias
,
Small
2
,
225
(
2006
).
21.
N.
Kazem
,
C.
Majidi
, and
C. E.
Maloney
,
Soft Matter
11
,
7877
(
2015
).
22.
M.
Jurásek
and
R.
Vácha
,
Soft Matter
13
,
7492
(
2017
).
23.
C.
Zhang
,
X.
Jian
, and
W.
Lu
,
Soft Matter
11
,
1362
(
2015
).
24.
K.
Chaudhary
,
Q.
Chen
,
J. J.
Juárez
,
S.
Granick
, and
J. A.
Lewis
,
J. Am. Chem. Soc.
134
,
12901
(
2012
).
25.
T.
Mokari
,
E.
Rothenberg
,
I.
Popov
, and
R.
Costi
,
Science
304
,
1787
(
2004
).
26.
S.
Kudera
,
L.
Carbone
,
M. F.
Casula
,
R.
Cingolani
,
A.
Falqui
,
E.
Snoeck
,
W. J.
Parak
, and
L.
Manna
,
Nano Lett.
5
,
445
(
2005
).
27.
A.
Walther
and
A. H. E.
Müller
,
Chem. Rev.
113
,
5194
(
2013
).
28.
G.-R.
Yi
,
D. J.
Pine
, and
S.
Sacanna
,
J. Phys.: Condens. Matter
25
,
193101
(
2013
).
29.
F.
Liang
,
C.
Zhang
, and
Z.
Yang
,
Adv. Mater.
26
,
6944
(
2014
).
30.
A. A.
Shah
,
B.
Schultz
,
K. L.
Kohlstedt
,
S. C.
Glotzer
, and
M. J.
Solomon
,
Langmuir
29
,
4688
(
2013
).
31.
J. S.
Myung
,
F.
Taslimi
,
R. G.
Winkler
, and
G.
Gompper
,
Macromolecules
47
,
4118
(
2014
).
32.
Y.
Zheng
and
S.
Wang
,
Appl. Surf. Sci.
257
,
10752
(
2011
).
33.
A.
Gomathi
,
M. R.
Harika
, and
C. N. R.
Rao
,
Mater. Sci. Eng. A
476
,
29
(
2008
).
34.
W.
Yan
,
Y.
Zhang
,
H.
Sun
,
S.
Liu
,
Z.
Chi
,
X.
Chen
, and
J.
Xu
,
J. Mater. Chem. A
2
,
20958
(
2014
).
35.
S. W.
Kim
,
H.
Choi
, and
K.
Lee
,
Mater. Res. Bull.
60
,
843
(
2014
).
36.
S.
Yu
,
B.-I.
Park
,
C.
Park
,
S. M.
Hong
,
T. H.
Han
, and
C. M.
Koo
,
ACS Appl. Mater. Interfaces
6
,
7498
(
2014
).
37.
J.
Zhao
,
F.
Du
,
W.
Cui
,
P.
Zhu
,
X.
Zhou
, and
X.
Xie
,
Composites, Part A
58
,
1
(
2014
).
38.
S.
Choi
,
K.
Kim
,
J.
Nam
, and
S. E.
Shim
,
Carbon
60
,
254
(
2013
).
39.
Q.
Liang
,
K.-S.
Moon
,
Y.
Zhang
, and
C. P.
Wong
, in
2008 58th Electronic Components and Technology Conference
(IEEE,
2008
), pp.
1958
1962
.
40.
Y.
Zhou
,
Y.
Bai
,
K.
Yu
,
Y.
Kang
, and
H.
Wang
,
Appl. Phys. Lett.
102
,
252903
(
2013
).
41.
N.
Badi
and
R.
Mekala
, in
Proceedings of the COMSOL Conference
(
2012
), pp.
1
5
.
42.
T.
Lu
,
E.
Markvicka
,
Y.
Jin
, and
C.
Majidi
,
ACS Appl. Mater. Interfaces
9
,
22055
(
2017
).
43.
I.
Balberg
,
N.
Binenbaum
, and
N.
Wagner
,
Phys. Rev. Lett.
52
,
1465
(
1984
).
44.
I.
Balberg
,
C. H.
Anderson
,
S.
Alexander
, and
N.
Wagner
,
Phys. Rev. B
30
,
3933
(
1984
).
45.
T. R.
Lear
,
S.-H.
Hyun
,
J. W.
Boley
,
E. L.
White
,
D. H.
Thompson
, and
R. K.
Kramer
,
Extreme Mech. Lett.
13
,
126
(
2017
).
46.
A.
Fassler
and
C.
Majidi
,
Adv. Mater.
27
,
1928
(
2015
).
47.
K.
Doudrick
,
S.
Liu
,
E. M.
Mutunga
,
K. L.
Klein
,
V.
Damle
,
K. K.
Varanasi
, and
K.
Rykaczewski
,
Langmuir
30
,
6867
(
2014
).
48.
S.
Liu
,
X.
Sun
,
N.
Kemme
,
V. G.
Damle
,
C.
Schott
,
M.
Herrmann
, and
K.
Rykaczewski
,
Microfluid. Nanofluid.
20
,
3
(
2016
).
49.
T.
Ackermann
,
R.
Neuhaus
, and
S.
Roth
,
Sci. Rep.
6
,
34289
(
2016
).

Supplementary Material

You do not currently have access to this content.