A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency (f1509MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f21529MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

1.
B.
Bangerter
,
S.
Talwar
,
R.
Arefi
, and
K.
Stewart
, “
Networks and devices for the 5G era
,”
IEEE Commun. Mag.
52
(
2
),
90
96
(
2014
).
2.
H.
Bogucka
,
P.
Kryszkiewicz
, and
A.
Kliks
, “
Dynamic spectrum aggregation for future 5G communications
,”
IEEE Commun. Mag.
53
(
5
),
35
43
(
2015
).
3.
R.
Ruby
, “
A snapshot in time: The future in filters for cell phones
,”
IEEE Microwave Mag.
16
(
7
),
46
59
(
2015
).
4.
S.
Shakib
,
M.
Elkholy
,
J.
Dunworth
,
V.
Aparin
, and
K.
Entesari
, “
A wideband 28 GHz power amplifier supporting 8 × 100 MHz carrier aggregation for 5G in 40 nm CMOS
,”
in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC)
(
2017
), pp.
44
45
.
5.
B.
Razavi
, “
The future of radios
,”
in Proceedings of the IEEE International Symposium on Circuits and Systems
(
2015
), pp.
1
8
.
6.
N.
Mahalingam
,
Y.
Wang
, and
B. K.
Thangarasu
, “
A 30-GHz power-efficient PLL frequency synthesizer for 60-GHz applications
,”
IEEE Trans. Microwave Theory Tech.
65
(
11
),
4165
4175
(
2017
).
7.
Li
,
A.
,
Y.
Chao
,
X.
Chen
,
L.
Wu
, and
H. C.
Luong
, “
A spur-and-phase-noise-filtering technique for inductor-less fractional-N injection-locked PLLs
,”
IEEE J. Solid-State Circuits
52
(
8
),
2128
2140
(
2017
).
8.
L.
Anttila
,
K.
Dani
,
A.-R.
Emilio
,
W.
Risto
, and
V.
Mikko
, “
Modeling and efficient cancellation of nonlinear self-interference in MIMO full-duplex transceivers
,”
in Globecom Workshops (GC Wkshps) (
IEEE,
2014
), pp.
777
783
.
9.
A.
Mirzaei
and
H.
Darabi
, “
Pulling mitigation in wireless transmitters
,”
IEEE J. Solid-State Circuits
49
(
9
),
1958
1970
(
2014
).
10.
T. J.
Kippenberg
,
S. M.
Spillane
, and
K. J.
Vahala
, “
Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity
,”
Phys. Rev. Lett.
93
(
8
),
083904
(
2004
).
11.
Y.
Yu
,
Y.
Chen
,
H.
Hu
,
W.
Xue
,
K.
Yvind
, and
J.
Mork
, “
Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry
,”
Laser Photonics Rev.
9
(
2
),
241
247
(
2015
).
12.
X.
Wu
and
T.
Luo
, “
The importance of anharmonicity in thermal transport across solid-solid interfaces
,”
J. Appl. Phys.
115
(
1
),
014901
(
2014
).
13.
Y.
Yang
,
E. J.
Ng
,
P. M.
Polunin
,
Y.
Chen
,
I. B.
Flader
,
S. W.
Shaw
,
M. I.
Dykman
, and
T. W.
Kenny
, “
Nonlinearity of degenerately doped bulk-mode silicon MEMS resonators
,”
J. Microelectromech. Syst.
25
(
5
),
859
869
(
2016
).
14.
M.
Ghatge
,
K.
Pratyusha
, and
T.
Roozbeh
, “
Power-insensitive silicon crystal-cut for amplitude-stable frequency synthesis
,” in
2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)
(IEEE,
2017
), pp.
76
79
.
15.
A.
Ganesan
,
C.
Do
, and
A.
Seshia
, “
Phononic frequency comb via intrinsic three-wave mixing
,”
Phys. Rev. Lett.
118
(
3
),
033903
(
2017
).
16.
M.
Toda
, “
Wave propagation in anharmonic lattices
,”
J. Phys. Soc. Jpn.
23
(
3
),
501
506
(
1967
).
17.
J.
Engelbrecht
,
Nonlinear Wave Processes of Deformation in Solids
(
Pitman Advanced Publishing Program
,
1983
), Vol.
16
.
18.
K. R.
McCall
, “
Theoretical study of nonlinear elastic wave propagation
,”
J. Geophys. Res.: Solid Earth
99
(
B2
),
2591
2600
, (
1994
).
19.
Y.
Hiki
and
A. V.
Granato
, “
Anharmonicity in noble metals; higher order elastic constants
,”
Phys. Rev.
144
(
2
),
411
(
1966
).
20.
M.
Ghatge
and
R.
Tabrizian
, “
The effect of elastic anharmonicity on the nonlinear behavior of waveguide-based AlN resonator
,” in
2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC)
(IEEE,
2017
), pp.
20
21
.
21.
M.
Rinaldi
,
Z.
Chiara
,
Z.
Chengjie
, and
P.
Gianluca
, “
Super-high-frequency two-port AlN contour-mode resonators for RF applications
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
57
(
1
),
38
45
(
2010
).
22.
M.
Rinaldi
,
C.
Zuniga
, and
G.
Piazza
, “
5-10 GHz AlN contour-mode nanoelectromechanical resonators
,” in
IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. MEMS 2009
(IEEE,
2009
), pp.
916
919
.
23.
K. E.
Wojciechowski
,
R. H.
Olsson
,
C. D.
Nordquist
, and
M. R.
Tuck
, “
Super high frequency width extensional aluminum nitride (AlN) MEMS resonators
,” in
2009 IEEE International Ultrasonics Symposium (IUS)
(IEEE,
2009
), pp.
1179
1182
.
24.
E.
Iborra
,
M.
Clement
,
J.
Capilla
,
J.
Olivares
, and
V.
Felmetsger
, “
Low-thickness high-quality aluminum nitride films for super high frequency solidly mounted resonators
,”
Thin Solid Films
520
(
7
),
3060
3063
(
2012
).
You do not currently have access to this content.