This study suggests a sequential ambient annealing process as an excellent post-treatment method to enhance the device performance and stability of W (tungsten) doped InZnO thin film transistors (WIZO-TFTs). Sequential ambient annealing at 250 °C significantly enhanced the device performance and stability of WIZO-TFTs, compared with other post-treatment methods, such as air ambient annealing and vacuum ambient annealing at 250 °C. To understand the enhanced device performance and stability of WIZO-TFT with sequential ambient annealing, we investigate the correlations between device performance and stability and electronic structures, such as band alignment, a feature of the conduction band, and band edge states below the conduction band. The enhanced performance of WIZO-TFTs with sequential ambient annealing is related to the modification of the electronic structure. In addition, the dominant mechanism responsible for the enhanced device performance and stability of WIZO-TFTs is considered to be a change in the shallow-level and deep-level band edge states below the conduction band.

1.
C. W.
Shih
and
A.
Chin
,
Sci. Rep.
7
,
1147
(
2017
).
2.
J.-S.
Park
,
T.-W.
Kim
,
D.
Stryakhilev
,
J.-S.
Lee
,
S.-G.
An
,
Y.-S.
Pyo
,
D.-B.
Lee
,
Y. G.
Mo
,
D.-U.
Jin
, and
H. K.
Chung
,
Appl. Phys. Lett.
95
,
013503
(
2009
).
3.
M.
Lee
,
C.-Y.
Chen
,
S.
Wang
,
S. N.
Cha
,
Y. J.
Park
,
J. M.
Kim
,
L.-J.
Chou
, and
Z. L.
Wang
,
Adv. Mater.
24
,
1759
1764
(
2012
).
4.
C. G.
Granqvist
,
Thin Solid Films
564
,
1
38
(
2014
).
5.
H. E.
Lee
,
S.
Kim
,
J.
Ko
,
H.-I.
Yeom
,
C.-W.
Byun
,
S. H.
Lee
,
D. J.
Joe
,
T.-H.
Im
,
S. H. K.
Park
, and
K. J.
Lee
,
Adv. Funct. Mater.
26
,
6170
6178
(
2016
).
6.
J. Y.
Kim
,
S. H.
Kim
,
H.-H.
Lee
,
K.
Lee
,
W.
Ma
,
X.
Gong
, and
A. J.
Heeger
,
Adv. Mater.
18
,
572
576
(
2006
).
7.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
492
(
2004
).
8.
J.-S.
Park
,
K.
Kim
,
Y.-G.
Park
,
Y.-G.
Mo
,
H. D.
Kim
, and
J. K.
Jeong
,
Adv. Mater.
21
,
329
333
(
2009
).
9.
B. D.
Ahn
,
J.-S.
Park
, and
K.-B.
Chung
,
Appl. Phys. Lett.
105
,
163505
(
2014
).
10.
Y. J.
Tak
,
B. D.
Ahn
,
S. P.
Park
,
S. J.
Kim
,
A.
Song
,
K.-B.
Chung
, and
H. J.
Kim
,
Sci. Rep.
6
,
21869
(
2016
).
11.
H.-W.
Park
,
A.
Song
,
D.
Choi
,
H.-J.
Kim
,
J.-Y.
Kwon
, and
K.-B.
Chung
,
Sci. Rep.
7
,
11634
(
2017
).
12.
J.-S.
Seo
and
B.-S.
Bae
,
ACS Appl. Mater. Interfaces
6
(
17
),
15335
15343
(
2014
).
13.
H.-W.
Park
,
A.
Song
,
S.
Kwon
,
B. D.
Ahn
, and
K.-B.
Chung
,
Appl. Phys. Express
9
,
111101
(
2016
).
14.
H.-W.
Park
,
K.
Park
,
J.-Y.
Kwon
,
D.
Choi
, and
K.-B.
Chung
,
IEEE Trans. Electron. Devices
64
(
1
),
159
163
(
2017
).
15.
D. W.
Greve
,
Field Effect Devices and Application: Devices for Portable, Low-Power, and Imaging Systems
, 1st ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1998
).
16.
C.-S.
Fuh
,
S. M.
Sze
,
P.-T.
Liu
,
L.-F.
Teng
, and
Y.-T.
Chou
,
Thin Solid Films
520
,
1489
1494
(
2011
).
17.
M. J.
Gadre
and
T. L.
Alford
,
Appl. Phys. Lett.
99
,
051901
(
2011
).
18.
S.
Park
,
S.
Bang
,
S.
Lee
,
J.
Park
,
Y.
Ko
, and
H.
Jeon
,
J. Nanosci. Nanotechnol.
11
,
6029
6033
(
2011
).
19.
B.
Chen
,
J.
Laverock
,
L. F. J.
Piper
,
A. R. H.
Preston
,
S. W.
Cho
,
A.
DeMasi
,
K. E.
Mith
,
D. O.
Scanlon
,
G. W.
Watson
,
R. G.
Egdell
,
P.-A.
Glans
, and
J.-H.
Guo
,
J. Phys.: Condens. Matter
25
,
165501
(
2013
).
20.
Y.
Kang
,
S.
Lee
,
H.
Sim
,
C. H.
Sohn
,
W. G.
Park
,
S. J.
Song
,
U. K.
Kim
,
C. S.
Hwang
,
S.
Han
, and
D.-Y.
Cho
,
J. Mater. Chem. C
2
,
9196
(
2014
).
21.
H.-W.
Park
,
J.-S.
Park
,
J. H.
Lee
, and
K.-B.
Chung
,
Electrochem. Solid-State Lett.
15
(
4
),
H133
H135
(
2012
).
22.
H.-W.
Park
,
B.-K.
Kim
,
J.-S.
Park
, and
K.-B.
Chung
,
Appl. Phys. Lett.
102
,
102102
(
2013
).

Supplementary Material

You do not currently have access to this content.