We report the observations of electronic properties of graphene oxide and reduced graphene oxide, performed with electron paramagnetic resonance technique in a broad temperature range. Both materials were examined in pure form and saturated with air, helium, and heavy water molecules. We show that spin localization strongly depends on the type and amount of molecules adsorbed at the graphene layer edges (and possible in-plane defects). Physical and chemical states of edges play crucial role in electrical transport within graphene-based materials, with hopping as the leading mechanism of charge carrier transport. Presented results are a good basis to understand the electronic properties of other carbon structures made of graphene-like building blocks. Most active carbons show some degree of functionalization and are known of having good adsorptive properties; thus, controlling both phenomena is important for many applications. Sample treatment with temperature, vacuum, and various adsorbents allowed for the observation of a possible metal-insulator transition and sorption pumping effects. The influence of adsorption on the localization phenomena in graphene would be very important if to consider the graphene-based material as possible candidates for the future spintronics that works in ambient conditions.

1.
B.
Náfrádi
,
M.
Choucair
,
K. P.
Dinse
, and
L.
Forró
,
Nat. Commun.
7
,
12232
(
2016
).
2.
M.
Kempiński
,
W.
Kempiński
,
J.
Kaszyński
, and
M.
Śliwińska-Bartkowiak
,
Appl. Phys. Lett.
88
,
143103
(
2006
).
3.
W.
Kempiński
,
D.
Markowski
,
M.
Kempiński
, and
M.
Śliwińska-Bartkowiak
,
Carbon
57
,
533
(
2013
).
4.
B.
Náfrádi
,
M.
Choucair
,
P. D.
Southon
,
C. J.
Kepert
, and
L.
Forró
,
Chem. Eur. J.
21
,
770
(
2015
).
5.
A. W. P.
Fung
,
M. S.
Dresselhaus
, and
M.
Endo
,
Phys. Rev. B
48
,
14953
(
1993
).
6.
M.
Kempiński
,
M.
Śliwińska-Bartkowiak
, and
W.
Kempiński
,
Rev. Adv. Mater. Sci.
14
,
163
(
2007
).
7.
D.
Markowski
,
K.
Kaszyńska
,
M.
Kempiński
,
M.
Śliwińska-Bartkowiak
,
W.
Kempiński
, and
Z.
Trybuła
,
Acta Phys. Pol., A
118
,
457
(
2010
).
8.
A.
Dankert
and
S. P.
Dash
,
Nat. Commun.
8
,
16093
(
2017
).
9.
X.
Jia
,
M.
Hofmann
,
V.
Meunier
,
B. G.
Sumpter
,
J.
Campos-Delgado
,
J. M.
Romo-Herrera
,
H.
Son
,
A.
Reina
,
J.
Kong
,
M.
Terrones
, and
M. S.
Dresselhaus
,
Science
323
,
1701
(
2009
).
10.
W. S.
Hummers
and
R. E.
Offeman
,
J. Am. Chem. Soc.
80
,
1339
(
1958
).
11.
S.
Pei
and
H. M.
Cheng
,
Carbon
50
,
3210
(
2012
).
12.
D. W.
Boukhvalov
,
V. Yu.
Osipov
,
A. I.
Shames
,
K.
Takai
,
T.
Hayashi
, and
T.
Enoki
,
Carbon
107
,
800
(
2016
).
13.
A. M.
Panich
,
A. I.
Shames
, and
N. A.
Sergeev
,
Appl. Magn. Reson.
44
,
107
(
2013
).
14.
D.
Lozano-Castello
,
M.
Jorda-Beneyto
,
D.
Cazorla-Amoros
,
A.
Linares-Solano
,
J. F.
Burger
,
H. J. M.
ter Brake
, and
H. J.
Holland
,
Carbon
48
,
123
(
2010
).
15.
M.
Kempiński
,
S.
Łoś
,
P.
Florczak
,
W.
Kempiński
, and
S.
Jurga
,
Acta Phys. Pol. A
132
,
81
(
2017
).
16.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
17.
S. H.
Al-Harthi
,
M.
Elzain
,
M.
Al-Barwani
,
A.
Kora'a
,
T.
Hysen
,
M. T.
Myint
, and
M. R.
Anantharaman
,
Nanoscale Res. Lett.
7
,
466
(
2012
).
18.
G. Z.
Magda
,
X.
Jin
,
I.
Hagymási
,
P.
Vancsó
,
Z.
Osvath
,
P.
Nemes-Incze
,
C.
Hwang
,
L. P.
Biró
, and
L.
Tapasztó
,
Nature
514
,
608
(
2014
).
You do not currently have access to this content.