We present an all-fabric-based self-charging power cloth (SCPC), which integrates a fabric-based single-electrode triboelectric generator (STEG) and a flexible supercapacitor. To effectively scavenge mechanical energy from the human motion, the STEG could be directly woven among the cloth, exhibiting excellent output capability. Meanwhile, taking advantage of fabric structures with a large surface-area and carbon nanotubes with high conductivity, the wearable supercapacitor exhibits high areal capacitance (16.76 mF/cm2) and stable cycling performance. With the fabric configuration and the aim of simultaneously collecting body motion energy by STEG and storing in supercapacitors, such SCPC could be easily integrated with textiles and charged to nearly 100 mV during the running motion within 6 min, showing great potential in self-powered wearable electronics and smart cloths.

1.
H.
Chen
,
Z.
Su
,
Y.
Song
,
X.
Cheng
,
X.
Chen
,
B.
Meng
,
Z.
Song
,
D.
Chen
, and
H.
Zhang
,
Adv. Funct. Mater.
27
,
1604434
(
2017
).
2.
J.
Han
,
B.
Kim
,
J.
Li
, and
M.
Meyyappan
,
Appl. Phys. Lett.
102
,
051903
(
2013
).
3.
S.
Li
,
Q.
Zhong
,
J.
Zhong
,
X.
Cheng
,
B.
Wang
,
B.
Hu
, and
J.
Zhou
,
ACS Appl. Mater. Interfaces
7
,
14912
(
2015
).
4.
Y.
Song
,
X.
Chen
,
J.
Zhang
,
X.
Cheng
, and
H.
Zhang
,
J. Microelectromech. Syst.
30
(
2017
).
5.
Z.
Wen
,
M.
Yeh
,
H.
Guo
,
J.
Wang
,
Y.
Zi
,
W.
Xu
,
J.
Deng
,
L.
Zhu
,
X.
Wang
, and
C.
Hu
,
Sci. Adv.
2
,
e1600097
(
2016
).
6.
X.
Pu
,
L.
Li
,
H.
Song
,
C.
Du
,
Z.
Zhao
,
C.
Jiang
,
G.
Cao
,
W.
Hu
, and
Z. L.
Wang
,
Adv. Mater.
27
,
2472
(
2015
).
7.
J.
Wang
,
X.
Li
,
Y.
Zi
,
S.
Wang
,
Z.
Li
,
L.
Zheng
,
F.
Yi
,
S.
Li
, and
Z.
Wang
,
Adv. Mater.
27
,
4830
(
2015
).
8.
W.
Liu
,
Z.
Chen
,
G.
Zhou
,
Y.
Sun
,
H. R.
Lee
,
C.
Liu
,
H.
Yao
,
Z.
Bao
, and
Y.
Cui
,
Adv. Mater.
28
,
3578
(
2016
).
9.
X.
Lu
,
M.
Yu
,
G.
Wang
,
Y.
Tong
, and
Y.
Li
,
Energy Environ. Sci.
7
,
2160
(
2014
).
10.
L.
Zhang
and
X.
Zhao
,
Chem. Soc. Rev.
38
,
2520
(
2009
).
11.
P.
Du
,
X.
Hu
,
C.
Yi
,
H. C.
Liu
,
P.
Liu
,
H. L.
Zhang
, and
X.
Gong
,
Adv. Funct. Mater.
25
,
2420
(
2015
).
12.
Y.
Zi
,
S.
Niu
,
J.
Wang
,
Z.
Wen
,
W.
Tang
, and
Z. L.
Wang
,
Nat. Commun.
6
,
8376
(
2015
).
13.
X.
Cheng
,
Y.
Song
,
M.
Han
,
B.
Meng
,
Z.
Su
,
L.
Miao
, and
H.
Zhang
,
Sens. Actuators, A
247
,
206
(
2016
).
14.
B.
Meng
,
X.
Cheng
,
X.
Zhang
,
M.
Han
,
W.
Liu
, and
H.
Zhang
,
Appl. Phys. Lett.
104
,
103904
(
2014
).
15.
Y.
Song
,
X.
Cheng
,
H.
Chen
,
J.
Huang
,
X.
Chen
,
M.
Han
,
Z.
Su
,
B.
Meng
,
Z.
Song
, and
H.
Zhang
,
J. Mater. Chem. A
4
,
14298
(
2016
).
16.
G.
Zhu
,
W. Q.
Yang
,
T.
Zhang
,
Q.
Jing
,
J.
Chen
,
Y. S.
Zhou
,
P.
Bai
, and
Z. L.
Wang
,
Nano Lett.
14
,
3208
(
2014
).
17.
X.
Zhang
,
J.
Brugger
, and
B.
Kim
,
Nano Energy
20
,
37
(
2016
).
18.
J.
Wang
,
Z.
Wen
,
Y.
Zi
,
P.
Zhou
,
J.
Lin
,
H.
Guo
,
Y.
Xu
, and
Z. L.
Wang
,
Adv. Funct. Mater.
26
,
1070
(
2015
).
19.
X.
Zhang
,
M.
Su
,
J.
Brugger
, and
B.
Kim
,
Nano Energy
33
,
393
(
2017
).
20.
M.
Shi
,
J.
Zhang
,
M.
Han
,
Y.
Song
,
Z.
Su
, and
H.
Zhang
, in
Proceedings of the 29th International Conference on Micro Electro Mechanical Systems (MEMS)
,
Shanghai
(
2016
), p.
1228
.

Supplementary Material

You do not currently have access to this content.