The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure without any structural defects and without any soft magnetic secondary phases. For Sm1–zZrz(Fe1–yCoy)12–xTix based alloys, which are considered an alternative to Nd2Fe14B magnets with a lower rare-earth content, the coercive field of a small magnetic cube is reduced to 60% of the anisotropy field at room temperature and to 50% of the anisotropy field at elevated temperature (473 K). This decrease of the coercive field is caused by misorientation, demagnetizing fields, and thermal fluctuations.

1.
T.
Kuno
,
S.
Suzuki
,
K.
Urushibata
,
K.
Kobayashi
,
N.
Sakuma
,
M.
Yano
,
A.
Kato
, and
A.
Manabe
,
AIP Adv.
6
,
025221
(
2016
).
2.
S.
Hirosawa
,
M.
Nishino
, and
S.
Miyashita
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
8
,
013002
(
2017
).
3.
H.
Kronmüller
,
K.-D.
Durst
, and
M.
Sagawa
,
J. Magn. Magn. Mater.
74
,
291
302
(
1988
).
4.
5.
R.
Becker
and
W.
Döring
,
Ferromagnetismus
(
Springer
,
1939
).
6.
F.
Hagedorn
,
J. Appl. Phys.
41
,
2491
(
1970
).
7.
M.
Grönefeld
and
H.
Kronmüller
,
J. Magn. Magn. Mater.
80
,
223
(
1989
).
8.
T.
Leineweber
and
H.
Kronmüller
,
J. Magn. Magn. Mater.
192
,
575
(
1999
).
9.
T.
Leineweber
and
H.
Kronmüller
,
Phys. B
275
,
5
(
2000
).
10.
M. E.
Schabes
,
J. Magn. Magn. Mater.
95
,
249
(
1991
).
12.
J.
Fischbacher
,
A.
Kovacs
,
H.
Oezelt
,
T.
Schrefl
,
L.
Exl
,
J.
Fidler
,
D.
Suess
,
N.
Sakuma
,
M.
Yano
,
A.
Kato
 et al.,
AIP Adv.
7
,
045310
(
2017
).
13.
L.
Zhang
,
W.
Ren
,
A.
Samanta
, and
Q.
Du
,
NPJ Comput. Mater.
2
,
16003
(
2016
).
14.
A.
Samanta
and
E.
Weinan
,
Commun. Comput. Phys.
14
,
265
(
2013
).
15.
M. F.
Carilli
,
K. T.
Delaney
, and
G. H.
Fredrickson
,
J. Chem. Phys.
143
,
054105
(
2015
).
16.
W. F.
Brown
,
Micromagnetics
(
Interscience Publishers
,
1963
).
17.
R.
Skomski
,
P.
Kumar
,
G. C.
Hadjipanayis
, and
D. J.
Sellmyer
,
IEEE Trans. Magn.
49
,
3229
(
2013
).
18.
H.
Kronmüller
,
M.
Becher
,
M.
Seeger
, and
A.
Zern
, in
Proceedings of the 9th International Symposium Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys
, edited by
F.
Missell
,
V.
Villas-Boas
,
H.
Rechenberg
, and
F.
Landgraf
(
São Paulo
,
Brazil
,
1996
), p.
1
.
19.
D.
Givord
,
P.
Tenaud
, and
T.
Viadieu
,
IEEE Trans. Magn.
24
,
1921
(
1988
).
20.
R.
Skomski
and
J.
Coey
,
Scr. Mater.
112
,
3
(
2016
).
22.
R.
Skomski
,
J.
Zhou
,
R. D.
Kirby
, and
D. J.
Sellmyer
,
J. Appl. Phys.
99
,
08B906
(
2006
).
23.
R.
Skomski
,
Simple Models of Magnetism
(
Oxford University Press on Demand
,
2008
).
24.
H.
Kronmüller
and
M.
Fähnle
,
Micromagnetism and the Microstructure of Ferromagnetic Solids
(
Cambridge university press
,
2003
).
25.
R.
Street
and
J.
Woolley
,
Proc. Phys. Soc.
69
,
1189
(
1956
).
26.
27.
M.
Becher
,
M.
Seeger
,
J.
Bauer
, and
H.
Kronmüller
, in
Magnetic Hysteresis in Novel Magnetic Materials
, edited by
G.
Hadjipanayis
(
Springer
,
1997
), p.
657
.
28.
V.
Villas-Boas
,
J.
Gonzalez
,
F.
Cebollada
,
M.
Rossignol
,
D.
Taylor
, and
D.
Givord
,
J. Magn. Magn. Mater.
185
,
180
(
1998
).
29.
S.
Hock
, Ph.D. thesis,
Universität Stuttgart
,
1988
.
30.
K.-D.
Durst
and
H.
Kronmüller
,
J. Magn. Magn. Mater.
59
,
86
(
1986
).
31.
E. C.
Stoner
and
E.
Wohlfarth
,
Philos. Trans. R. Soc., A
240
,
599
(
1948
).
32.
H.
Kronmüller
,
K.-D.
Durst
, and
G.
Martinek
,
J. Magn. Magn. Mater.
69
,
149
(
1987
).
33.
D.
Givord
,
A.
Lienard
,
P.
Tenaud
, and
T.
Viadieu
,
J. Magn. Magn. Mater.
67
,
L281
(
1987
).
34.
R.
Quey
,
P.
Dawson
, and
F.
Barbe
,
Comput. Methods Appl. Mech. Eng.
200
,
1729
(
2011
).
35.
H.
Sepehri-Amin
,
T.
Ohkubo
,
S.
Nagashima
,
M.
Yano
,
T.
Shoji
,
A.
Kato
,
T.
Schrefl
, and
K.
Hono
,
Acta Mater.
61
,
6622
(
2013
).
You do not currently have access to this content.