We report the thermal conductivity of photoelectrochemically synthesized mesoporous silicon (MPS), with ∼20-nm diameter pores and 52%–58% porosity. The thermal conductivity of MPS samples with a thickness of a few microns was measured using the three omega (3ω) differential technique. We experimentally demonstrated that the thermal conductivity of MPS varies between 3 and 7 W/m K at room temperature and is dependent on the photoelectrochemical etching times used during the MPS synthesis, which induces a slight change in the MPS porosity. Calculations were conducted using the Boltzmann transport equation in the relaxation time approximation, with the results suggesting that the large thermal conductivity reduction in the MPSs was not entirely explained by the pore boundary scattering. Our findings indicate that elastic softening in the mesoporous structure may be responsible for the reduction in the thermal conductivity.

1.
A. G.
Cullis
and
L. T.
Canham
,
Nature
353
(
6342
),
335
338
(
1991
).
2.
C.
Biber
,
paper presented at the Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
Semi-Therm
(
2008
).
3.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
(
7175
),
163
167
(
2008
).
4.
5.
J.-K.
Yu
,
S.
Mitrovic
,
D.
Tham
,
J.
Varghese
, and
J. R.
Heath
,
Nat. Nanotechnol.
5
,
718
721
(
2010
).
6.
Y.
He
and
G.
Galli
,
Phys. Rev. Lett.
108
(
21
),
215901
(
2012
).
7.
J.
Lee
,
J.
Lim
, and
P.
Yang
,
Nano Lett.
15
(
5
),
3273
3279
(
2015
).
8.
A.
Drost
,
P.
Steiner
,
H.
Moser
, and
W.
Lang
,
Sens. Mater.
7
,
111
(
1995
).
9.
G.
Gesele
,
J.
Linsmeier
,
V.
Drach
,
J.
Fricke
, and
R.
Arens-Fischer
,
J. Phys. D: Appl. Phys.
30
(
21
),
2911
(
1997
).
10.
G.
Benedetto
,
L.
Boarino
, and
R.
Spagnolo
,
Appl. Phys. A
64
(
2
),
155
159
(
1997
).
11.
V.
Lysenko
,
S.
Perichon
,
B.
Remaki
,
D.
Barbier
, and
B.
Champagnon
,
J. Appl. Phys.
86
(
12
),
6841
6846
(
1999
).
12.
J. d.
Boor
,
D. S.
Kim
,
X.
Ao
,
D.
Hagen
,
A.
Cojocaru
,
H.
Föll
, and
V.
Schmidt
,
Europhys. Lett.
96
(
1
),
16001
(
2011
).
13.
K.
Kim
and
T. E.
Murphy
,
J. Appl. Phys.
118
(
15
),
154304
(
2015
).
14.
K.
Valalaki
and
A. G.
Nassiopoulou
,
J. Phys. D: Appl. Phys.
50
(
19
),
195302
(
2017
).
15.
J. D.
Chung
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
43
(
4
),
521
538
(
2000
).
16.
Y.
Chen
,
D.
Li
,
J. R.
Lukes
, and
A.
Majumdar
,
J. Heat Transfer
127
(
10
),
1129
1137
(
2005
).
17.
R.
Yang
,
G.
Chen
, and
M. S.
Dresselhaus
,
Phys. Rev. B
72
(
12
),
125418
(
2005
).
18.
F. X.
Alvarez
,
D.
Jou
, and
A.
Sellitto
,
Appl. Phys. Lett.
97
(
3
),
033103
(
2010
).
19.
G.
Romano
,
K.
Esfarjani
,
D. A.
Strubbe
,
D.
Broido
, and
A. M.
Kolpak
,
Phys. Rev. B
93
(
3
),
035408
(
2016
).
20.
Y.-C.
Hua
and
B.-Y.
Cao
,
Appl. Therm. Eng.
111
,
1401
1408
(
2017
).
21.
J.-H.
Lee
,
G. A.
Galli
, and
J. C.
Grossman
,
Nano Lett.
8
(
11
),
3750
3754
(
2008
).
22.
J.
Boor
,
D. S.
Kim
,
X.
Ao
,
M.
Becker
,
N. F.
Hinsche
,
I.
Mertig
,
P.
Zahn
, and
V.
Schmidt
,
Appl. Phys. A
107
(
4
),
789
794
(
2012
).
23.
K.
Valalaki
,
P.
Benech
, and
A.
Galiouna Nassiopoulou
,
Nanoscale Res. Lett.
11
(
1
),
201
(
2016
).
24.
C. C.
Chiang
,
P. C.
Juan
, and
T.-H.
Lee
,
J. Electrochem. Soc.
163
(
5
),
H265
H268
(
2016
).
25.
D. S.
Barth
,
C.
Gladden
,
A.
Salandrino
,
K.
O'Brien
,
Z.
Ye
,
M.
Mrejen
,
Y.
Wang
, and
X.
Zhang
,
Adv. Mater.
27
(
40
),
6131
6136
(
2015
).
26.
S. E.
Foss
,
P. Y. Y.
Kan
, and
T. G.
Finstad
,
J. Appl. Phys.
97
(
11
),
114909
(
2005
).
27.
R. L.
Smith
and
S. D.
Collins
,
J. Appl. Phys.
71
(
8
),
R1
R22
(
1992
).
28.
V.
Lehmann
,
R.
Stengl
, and
A.
Luigart
,
Mater. Sci. Eng.,B
69–70
(
0
),
11
22
(
2000
).
29.
D. H.
Ge
,
M. C.
Wang
,
W. J.
Liu
,
S.
Qin
,
P. L.
Yan
, and
J. W.
Jiao
,
Electrochim. Acta
88
(
0
),
141
146
(
2013
).
30.
H.
Föll
,
M.
Christophersen
,
J.
Carstensen
, and
G.
Hasse
,
Mater. Sci. Eng., R
39
(
4
),
93
141
(
2002
).
31.
M.
Khardani
,
M.
Bouaïcha
, and
B.
Bessaïs
,
Phys. Status Solidi C
4
(
6
),
1986
1990
(
2007
).
32.
M.
Thönissen
,
S.
Billat
,
M.
Krüger
,
H.
Lüth
,
M. G.
Berger
,
U.
Frotscher
, and
U.
Rossow
,
J. Appl. Phys.
80
(
5
),
2990
2993
(
1996
).
33.
M.
Park
,
J.
Koo
,
J.
Kim
,
H.
Jeon
,
C.
Bae
, and
C.
Krug
,
Appl. Phys. Lett.
86
(
25
),
252110
(
2005
).
34.
P.
de Rouffignac
,
Z.
Li
, and
R. G.
Gordon
,
Electrochem. Solid-State Lett.
7
(
12
),
G306
G308
(
2004
).
35.
S. M.
Lee
,
D.
Cahill
, and
T.
Allen
,
Phys. Rev. B
52
(
1
),
253
257
(
1995
).
36.
W.
Fulkerson
,
J.
Moore
,
R.
Williams
,
R.
Graves
, and
D.
McElroy
,
Phys. Rev.
167
(
3
),
765
782
(
1968
).
37.
M. G.
Holland
,
Phys. Rev.
132
(
6
),
2461
(
1963
).
38.
M.
Asheghi
,
K.
Kurabayashi
,
R.
Kasnavi
, and
K. E.
Goodson
,
J. Appl. Phys.
91
(
8
),
5079
5088
(
2002
).
39.
W.
Liu
and
M.
Asheghi
,
J. Heat Transfer
128
(
1
),
75
83
(
2005
).
40.
A.
Majumdar
,
J. Heat Transfer
115
(
1
),
7
16
(
1993
).
41.
M. C.
Wingert
,
S.
Kwon
,
M.
Hu
,
D.
Poulikakos
,
J.
Xiang
, and
R.
Chen
,
Nano Lett.
15
(
4
),
2605
2611
(
2015
).
42.
L.
Yang
,
Y.
Yang
,
Q.
Zhang
,
Y.
Zhang
,
Y.
Jiang
,
Z.
Guan
,
M.
Gerboth
,
J.
Yang
,
Y.
Chen
,
D.
Greg Walker
,
T. T.
Xu
, and
D.
Li
,
Nanoscale
8
,
17895
17901
(
2016
).
43.
D.
Bellet
,
P.
Lamagnère
,
A.
Vincent
, and
Y.
Bréchet
,
J. Appl. Phys.
80
(
7
),
3772
3776
(
1996
).
44.
C.
Populaire
,
B.
Remaki
,
V.
Lysenko
,
D.
Barbier
,
H.
Artmann
, and
T.
Pannek
,
Appl. Phys. Lett.
83
(
7
),
1370
1372
(
2003
).

Supplementary Material

You do not currently have access to this content.