An effective and facile strategy is proposed to demonstrate an engineered oxide hetero-interface of a thin film diode with a high current density and low operating voltage. The electrical characteristics of an oxide hetero-interface thin film diode are governed by two theoretical models: the space charge-limited current model and the Fowler-Nordheim (F-N) tunneling model. Interestingly, the dominant mechanism strongly depends on the insulator thickness, and the mechanism change occurs at a critical thickness. This paper shows that conduction mechanisms of oxide hetero-interface thin film diodes depend on thicknesses of transport oxide layers and that current densities of these can be exponentially increased through quantum tunneling in the diodes with the thicknesses less than 10 nm. These oxide hetero-interface diodes have great potential for low-powered transparent nanoscale applications.

1.
J. H.
Burroughes
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. N.
Marks
,
K.
Mackay
,
R. H.
Friend
,
P. L.
Burns
, and
A. B.
Holmes
,
Nature
347
,
539
(
1990
).
2.
E.
Yablonovitch
,
E.
Kapon
,
T. J.
Gmitter
,
C. P.
Yun
, and
R.
Bhat
,
IEEE Photonics Technol. Lett.
1
,
41
(
1989
).
3.
J. R.
Hollahan
and
R. S.
Rosler
,
Thin Film Processes
(
Academic
,
New York
,
1978
), pp.
335
360
.
4.
A.
Kudo
,
H.
Yanagi
,
K.
Ueda
,
H.
Hosono
,
H.
Kawazoe
, and
Y.
Yano
,
Appl. Phys. Lett.
75
,
2851
(
1999
).
5.
C. H.
Chen
,
S.-J.
Chang
,
Y.-K.
Su
,
G.-C.
Chi
,
J.-Y.
Chi
,
C. A.
Chang
,
J.-K.
Sheu
, and
J.-F.
Chen
,
IEEE Photonics Technol. Lett.
13
,
848
(
2001
).
6.
S.
Zhang
and
J. K. O.
Sin
,
IEEE Electron Device Lett.
19
,
192
(
1998
).
7.
S.
Baco
,
A.
Chik
, and
F. M.
Yassin
,
J. Sci. Technol.
4
,
61
(
2012
).
8.
H.
Ahmad
,
S. K.
Kamarudin
,
L. J.
Minggu
, and
M.
Kassim
,
Renewable Sustainable Energy Rev.
43
,
599
(
2015
).
9.
G.
Hautier
,
A.
Miglio
,
G.
Ceder
,
G.-M.
Rignanese
, and
X.
Gonze
,
Nat. Commun.
4
,
2292
(
2013
).
10.
H.-Y.
Lee
and
M.-Y.
Chern
,
J. Korean Phys. Soc.
67
,
1804
(
2015
).
11.
J.
Zhang
,
Y.
Li
,
B.
Zhang
,
H.
Wang
,
Q.
Xin
, and
A.
Song
,
Nat. Commun.
6
,
7561
(
2015
).
12.
E.
Lee
,
J.
Lee
,
J.-H.
Kim
,
K.-H.
Lim
,
J. S.
Byun
,
J.
Ko
,
Y. D.
Kim
,
Y.
Park
, and
Y. S.
Kim
,
Nat. Commun.
6
,
6785
(
2015
).
13.
Y.
Park
,
E.
Lee
,
J.
Lee
,
K.-H.
Lim
, and
Y. S.
Kim
,
Appl. Phys. Lett.
107
,
143506
(
2015
).
14.
M. A.
Lampert
,
Phys. Rev.
103
,
1648
(
1956
).
15.
M.
Lenzlinger
and
E. H.
Snow
,
J. Appl. Phys.
40
,
278
(
1969
).
16.
E. P.
Gusev
,
E.
Cartier
,
D. A.
Buchanan
,
M.
Gribelyuk
,
M.
Copel
,
H.
Okorn-Schmidt
, and
C.
D'emic
,
Microelectron. Eng.
59
,
341
(
2001
).
17.
A. C.
Cameron
and
F. A. G.
Windmeijer
,
J. Econ.
77
,
329
(
1997
).
18.
G.
Singh-Bhalla
,
C.
Bell
,
J.
Ravichandran
,
W.
Siemons
,
Y.
Hikita
,
S.
Salahuddin
,
A. F.
Hebard
,
H. Y.
Hwang
, and
R.
Ramesh
,
Nat. Phys.
7
,
80
(
2011
).
19.
C.
Zhao
,
C. Z.
Zhao
,
S.
Taylor
, and
P. R.
Chalker
,
Materials
7
,
5117
(
2014
).
20.
K. T.
Narasimha
,
C.
Ge
,
J. D.
Fabbri
,
W.
Clay
,
B. A.
Tkachenko
,
A. A.
Fokin
,
P. R.
Schreiner
,
J. E.
Dahl
,
R. M. K.
Carlson
, and
Z. X.
Shen
,
Nat. Nanotechnol.
11
,
267
(
2016
).

Supplementary Material

You do not currently have access to this content.