The elastic properties of mechanical metamaterials are direct functions of their topological designs. Rational design approaches based on computational models could, therefore, be used to devise topological designs that result in the desired properties. It is of particular importance to independently tailor the elastic modulus and Poisson's ratio of metamaterials. Here, we present patterned randomness as a strategy for independent tailoring of both properties. Soft mechanical metamaterials incorporating various types of patterned randomness were fabricated using an indirect additive manufacturing technique and mechanically tested. Computational models were also developed to predict the topology-property relationship in a wide range of proposed topologies. The results of this study show that patterned randomness allows for independent tailoring of the elastic properties and covering a broad area of the elastic modulus-Poisson's ratio plane. The uniform and homogenous topologies constitute the boundaries of the covered area, while topological designs with patterned randomness fill the enclosed area.

1.
J. N.
Grima
and
R.
Caruana-Gauci
, “
Mechanical metamaterials: Materials that push back
,”
Nat. Mater.
11
(
7
),
565
566
(
2012
).
2.
H. M.
Kolken
and
A.
Zadpoor
, “
Auxetic mechanical metamaterials
,”
RSC Adv.
7
(
9
),
5111
5129
(
2017
).
3.
Z. G.
Nicolaou
and
A. E.
Motter
, “
Mechanical metamaterials with negative compressibility transitions
,”
Nat. Mater.
11
(
7
),
608
613
(
2012
).
4.
A. A.
Zadpoor
, “
Mechanical meta-materials
,”
Mater. Horiz.
3
(
5
),
371
381
(
2016
).
5.
R.
Lakes
, “
Negative Poisson's ratio materials: Response
,”
Science
238
,
551
(
1987
).
6.
X.
Zheng
,
H.
Lee
,
T. H.
Weisgraber
,
M.
Shusteff
,
J.
DeOtte
,
E. B.
Duoss
,
J. D.
Kuntz
,
M. M.
Biener
,
Q.
Ge
,
J. A.
Jackson
 et al, “
Ultralight, ultrastiff mechanical metamaterials
,”
Science
344
(
6190
),
1373
1377
(
2014
).
7.
M.
Kadic
,
T.
Bückmann
,
N.
Stenger
,
M.
Thiel
, and
M.
Wegener
, “
On the practicability of pentamode mechanical metamaterials
,”
Appl. Phys. Lett.
100
(
19
),
191901
(
2012
).
8.
R.
Hedayati
,
A.
Leeflang
, and
A.
Zadpoor
, “
Additively manufactured metallic pentamode meta-materials
,”
Appl. Phys. Lett.
110
(
9
),
091905
(
2017
).
9.
S.
Janbaz
,
H.
Weinans
, and
A. A.
Zadpoor
, “
Geometry-based control of instability patterns in cellular soft matter
,”
RSC Adv.
6
(
24
),
20431
20436
(
2016
).
10.
J. T.
Overvelde
and
K.
Bertoldi
, “
Relating pore shape to the non-linear response of periodic elastomeric structures
,”
J. Mech. Phys. Solids
64
,
351
366
(
2014
).
11.
J. T. B.
Overvelde
,
S.
Shan
, and
K.
Bertoldi
, “
Compaction through buckling in 2D periodic, soft and porous structures: Effect of pore shape
,”
Adv. Mater.
24
(
17
),
2337
2342
(
2012
).
12.
A.
Alderson
,
K. L.
Alderson
,
D.
Attard
,
K. E.
Evans
,
R.
Gatt
,
J. N.
Grima
,
W.
Miller
,
N.
Ravirala
,
C.
Smith
, and
K.
Zied
, “
Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading
,”
Composites Sci. Technol.
70
(
7
),
1042
1048
(
2010
).
13.
R.
Gatt
,
D.
Attard
,
P.-S.
Farrugia
,
K. M.
Azzopardi
,
L.
Mizzi
,
J.-P.
Brincat
, and
J. N.
Grima
, “
A realistic generic model for anti-tetrachiral systems
,”
Phys. Status Solidi B
250
(
10
),
2012
2019
(
2013
).
14.
H.
Wan
,
H.
Ohtaki
,
S.
Kotosaka
, and
G.
Hu
, “
A study of negative Poisson's ratios in auxetic honeycombs based on a large deflection model
,”
Eur. J. Mech.-A/Solids
23
(
1
),
95
106
(
2004
).
15.
J.
Whitty
,
F.
Nazare
, and
A.
Alderson
, “
Modelling the effects of density variations on the In-plane Poisson's ratios and Young's moduli of periodic conventional and re-entrant honeycombs–Part 1: Rib thickness variations
,”
Cell. Polym.
21
(
2
),
69
98
(
2002
).
16.
D.
Yang
,
S.
Lee
, and
F.
Huang
, “
Geometric effects on micropolar elastic honeycomb structure with negative Poisson's ratio using the finite element method
,”
Finite Elements Anal. Des.
39
(
3
),
187
205
(
2003
).
17.
A.
Alderson
,
J.
Rasburn
,
S.
Ameer-Beg
,
P. G.
Mullarkey
,
W.
Perrie
, and
K. E.
Evans
, “
An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties
,”
Ind. Eng. Chem. Res.
39
(
3
),
654
665
(
2000
).
18.
K.
Wang
,
Y.-H.
Chang
,
Y.
Chen
,
C.
Zhang
, and
B.
Wang
, “
Designable dual-material auxetic metamaterials using three-dimensional printing
,”
Mater. Des.
67
,
159
164
(
2015
).
19.
K. R.
Olympio
and
F.
Gandhi
, “
Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing
,”
J. Intell. Mater. Syst. Struct.
21
(
17
),
1737
1753
(
2010
).

Supplementary Material

You do not currently have access to this content.