The band structure of surface plasmon polaritons (SPPs) on the Ag surface in the presence of gratings and SPP-based surface-enhanced Raman scattering (SERS) are investigated theoretically and experimentally. The SPP bandgap position can be tuned by geometric parameters. The SPP band edge dominates the SERS behavior. The template stripping process is introduced to reduce SPP propagation losses, improving SERS sensitivity by ∼40. Apart from flexibility and a moderate SERS enhancement factor of the order of 105–106, the SPP band structure is highly reproducible with a relative standard deviation of 10.9%. Our results open opportunities for SPP band structures to serve as SERS substrates.

1.
Y. C.
Cao
,
R.
Jin
, and
C. A.
Mirkin
,
Science
297
(
5586
),
1536
1540
(
2002
).
2.
J. S.
Huang
,
V.
Callegari
,
P.
Geisler
,
C.
Bruning
,
J.
Kern
,
J. C.
Prangsma
,
X.
Wu
,
T.
Feichtner
,
J.
Ziegler
,
P.
Weinmann
,
M.
Kamp
,
A.
Forchel
,
P.
Biagioni
,
U.
Sennhauser
, and
B.
Hecht
,
Nat. Commun.
1
,
150
(
2010
).
3.
F.
Benz
,
C.
Tserkezis
,
L. O.
Herrmann
,
B.
de Nijs
,
A.
Sanders
,
D. O.
Sigle
,
L.
Pukenas
,
S. D.
Evans
,
J.
Aizpurua
, and
J. J.
Baumberg
,
Nano Lett.
15
(
1
),
669
674
(
2015
).
4.
R. W.
Taylor
,
F.
Benz
,
D. O.
Sigle
,
R. W.
Bowman
,
P.
Bao
,
J. S.
Roth
,
G. R.
Heath
,
S. D.
Evans
, and
J. J.
Baumberg
,
Sci. Rep.
4
,
5940
(
2014
).
5.
S. M.
Nie
and
S. R.
Emory
,
Science
275
(
5303
),
1102
1106
(
1997
).
6.
S. L.
Kleinman
,
E.
Ringe
,
N.
Valley
,
K. L.
Wustholz
,
E.
Phillips
,
K. A.
Scheidt
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Am. Chem. Soc.
133
(
11
),
4115
4122
(
2011
).
7.
J.
Kneipp
,
H.
Kneipp
, and
K.
Kneipp
,
Chem. Soc. Rev.
37
(
5
),
1052
1060
(
2008
).
8.
X. M.
Qian
and
S. M.
Nie
,
Chem. Soc. Rev.
37
(
5
),
912
920
(
2008
).
9.
H. G.
Duan
,
H. L.
Hu
,
K.
Kumar
,
Z. X.
Shen
, and
J. K. W.
Yang
,
ACS Nano
5
(
9
),
7593
7600
(
2011
).
10.
L.
Feng
,
R.
Ma
,
Y.
Wang
,
D.
Xu
,
D.
Xiao
,
L.
Liu
, and
N.
Lu
,
Nano Res.
8
(
11
),
3715
3724
(
2015
).
11.
H.
Im
,
K. C.
Bantz
,
N. C.
Lindquist
,
C. L.
Haynes
, and
S. H.
Oh
,
Nano Lett.
10
(
6
),
2231
2236
(
2010
).
12.
J. F.
Li
,
Y. F.
Huang
,
Y.
Ding
,
Z. L.
Yang
,
S. B.
Li
,
X. S.
Zhou
,
F. R.
Fan
,
W.
Zhang
,
Z. Y.
Zhou
,
D. Y.
Wu
,
B.
Ren
,
Z. L.
Wang
, and
Z. Q.
Tian
,
Nature
464
(
7287
),
392
395
(
2010
).
13.
H. H.
Wang
,
C. Y.
Liu
,
S. B.
Wu
,
N. W.
Liu
,
C. Y.
Peng
,
T. H.
Chan
,
C. F.
Hsu
,
J. K.
Wang
, and
Y. L.
Wang
,
Adv. Mater.
18
(
4
),
491
495
(
2006
).
14.
S.
Yang
,
W.
Cai
,
L.
Kong
, and
Y.
Lei
,
Adv. Funct. Mater.
20
(
15
),
2527
2533
(
2010
).
15.
P.
Nagpal
,
N. C.
Lindquist
,
S. H.
Oh
, and
D. J.
Norris
,
Science
325
(
5940
),
594
597
(
2009
).
16.
K.
Sakoda
,
Opt. Express
4
(
5
),
167
176
(
1999
).
17.
E. C.
Le Ru
,
E.
Blackie
,
M.
Meyer
, and
P. G.
Etchegoin
,
J. Phys. Chem. C
111
(
37
),
13794
13803
(
2007
).
You do not currently have access to this content.