Cathodes of Li- and Na-ion batteries usually have capacities <200 mAh/g, significantly less than the anodes. Two-dimensional materials can overcome this limitation but suffer from low voltages. In this context, we investigate NbS2 functionalized by O, F, and Cl as a cathode material by first-principles calculations, considering both the conversion and intercalation mechanisms. NbS2O2 shows a higher voltage than NbS2 for both Li and Na, but the voltage decreases drastically for increasing ion coverage. Even higher voltages and favorable dependences on the ion coverage are achieved by F and Cl functionalization. We obtain NbS2F2 and NbS2Cl2 energy densities of 1223 mW h/g and 823 mW h/g for lithiation and 1086 mW h/g and 835 mW h/g for sodiation, respectively. These values are higher than those for most state-of-the-art cathode materials (600 mW h/g). In addition, low diffusion barriers enable high cycling rates.

1.
Y.
Jing
,
Z.
Zhou
,
C. R.
Cabrera
, and
Z.
Chen
, “
Graphene, inorganic graphene analogs and their composites for lithium ion batteries
,”
J. Mater. Chem. A
2
,
12104
12122
(
2014
).
2.
W.
Sun
and
Y.
Wang
, “
Graphene-based nanocomposite anodes for lithium-ion batteries
,”
Nanoscale
6
,
11528
11552
(
2014
).
3.
H.
Kang
,
Y.
Liu
,
K.
Cao
,
Y.
Zhao
,
L.
Jiao
,
Y.
Wang
, and
H.
Yuan
, “
Update on anode materials for Na-ion batteries
,”
J. Mater. Chem. A
3
,
17899
17913
(
2015
).
4.
M. V.
Reddy
,
G. V. S.
Rao
, and
B. V. R.
Chowdari
, “
Metal oxides and oxysalts as anode materials for Li ion batteries
,”
Chem. Rev.
113
,
5364
5457
(
2013
).
5.
K.
Fukuda
,
K.
Kikuya
,
K.
Isono
, and
M.
Yoshio
, “
Foliated natural graphite as the anode material for rechargeable lithium-ion cells
,”
J. Power Sources
69
,
165
168
(
1997
).
6.
J.
Zhang
,
L.
Chang
,
F.
Wang
,
D.
Xie
,
Q.
Su
, and
G.
Du
, “
Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries
,”
Mater. Res. Bull.
68
,
120
125
(
2015
).
7.
Z.-S.
Wu
,
W.
Ren
,
L.
Wen
,
L.
Gao
,
J.
Zhao
,
Z.
Chen
,
G.
Zhou
,
F.
Li
, and
H.-M.
Cheng
, “
Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
,”
ACS Nano
4
,
3187
3194
(
2010
).
8.
G. A.
Tritsaris
,
E.
Kaxiras
,
S.
Meng
, and
E.
Wang
, “
Adsorption and diffusion of lithium on layered silicon for Li-ion storage
,”
Nano Lett.
13
,
2258
2263
(
2013
).
9.
J.
Qian
,
X.
Wu
,
Y.
Cao
,
X.
Ai
, and
H.
Yang
, “
High capacity and rate capability of amorphous phosphorus for sodium ion batteries
,”
Angew. Chem. Int. Ed.
52
,
4633
4636
(
2013
).
10.
J.
Sun
,
H.-W.
Lee
,
M.
Pasta
,
H.
Yuan
,
G.
Zheng
,
Y.
Sun
,
Y.
Li
, and
Y.
Cui
, “
A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries
,”
Nat. Nanotechnol.
10
,
980
985
(
2015
).
11.
B.
Xu
,
D.
Qian
,
Z.
Wang
, and
Y. S.
Meng
, “
Recent progress in cathode materials research for advanced lithium ion batteries
,”
Mater. Sci. Eng., R
73
,
51
65
(
2012
).
12.
X.
Xiang
,
K.
Zhang
, and
J.
Chen
, “
Recent advances and prospects of cathode materials for sodium-ion batteries
,”
Adv. Mater.
27
,
5343
5364
(
2015
).
13.
X.
Tan
,
C. R.
Cabrera
, and
Z.
Chen
, “
Metallic BSi3 silicene: A promising high capacity anode material for lithium-ion batteries
,”
J. Phys. Chem. C
118
,
25836
25843
(
2014
).
14.
V. V.
Kulish
,
O. I.
Malyi
,
C.
Persson
, and
P.
Wu
, “
Phosphorene as an anode material for Na-Ion batteries: A first-principles study
,”
Phys. Chem. Chem. Phys.
17
,
13921
13928
(
2015
).
15.
B.
Ahmed
,
D. H.
Anjum
,
M. N.
Hedhili
, and
H. N.
Alshareef
, “
Mechanistic insight into the stability of HfO2-coated MoS2 nanosheet anodes for sodium ion batteries
,”
Small
11
,
4341
4350
(
2015
).
16.
H.
Shu
,
F.
Li
,
C.
Hu
,
P.
Liang
,
D.
Cao
, and
X.
Chen
, “
The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries
,”
Nanoscale
8
,
2918
2926
(
2016
).
17.
S.
Cahangirov
,
M.
Topsakal
,
E.
Aktürk
,
H.
Şahin
, and
S.
Ciraci
, “
Two- and one-dimensional honeycomb structures of silicon and germanium
,”
Phys. Rev. Lett.
102
,
236804
(
2009
).
18.
Y.
Liao
,
K.-S.
Park
,
P.
Xiao
,
G.
Henkelman
,
W.
Li
, and
J. B.
Goodenough
, “
Sodium intercalation behavior of layered NaxNbS2 (0x1)
,”
Chem. Mater.
25
,
1699
1705
(
2013
).
19.
D.
Er
,
J.
Li
,
M.
Naguib
,
Y.
Gogotsi
, and
V. B.
Shenoy
, “
Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries
,”
ACS Appl. Mater. Interfaces
6
,
11173
11179
(
2014
).
20.
Y.
Xie
,
Y.
DallAgnese
,
M.
Naguib
,
Y.
Gogotsi
,
M. W.
Barsoum
,
H. L.
Zhuang
, and
P. R. C.
Kent
, “
Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries
,”
ACS Nano
8
,
9606
9615
(
2014
).
21.
R.
Lv
,
J. A.
Robinson
,
R. E.
Schaak
,
D.
Sun
,
Y.
Sun
,
T. E.
Mallouk
, and
M.
Terrones
, “
Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets
,”
Acc. Chem. Res.
48
,
56
64
(
2015
).
22.
E.
Yang
,
H.
Ji
, and
Y.
Jung
, “
Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes
,”
J. Phys. Chem. C
119
,
26374
26380
(
2015
).
23.
A. K.
De
,
A Textbook of Inorganic Chemistry
(
New Age International
,
2003
), p
155
.
24.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
26.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H. A.
Krieg
, “
Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
27.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
, “
Reversible work transition state theory: Application to dissociative adsorption of hydrogen
,”
Surf. Sci.
324
,
305
337
(
1995
).
28.
K.
Abraham
,
M.
Rupich
, and
J.
Elliot
, “
Rechargeable sodium batteries–VI. Cycling behavior of VS2, ‘VCl3 + nS’ and NbS2Cl2 cathodes in molten NaAlCl4
,”
Electrochim. Acta
30
,
1635
1643
(
1985
).
29.
R. V.
Kumar
and
T.
Sarakonsri
,
High Energy Density Lithium Batteries
(
Wiley-VCH
,
2010
), pp.
1
25
.
30.
F.
Zhou
,
M.
Cococcioni
,
C. A.
Marianetti
,
D.
Morgan
, and
G.
Ceder
, “
First-principles prediction of redox potentials in transition-metal compounds with LDA+U
,”
Phys. Rev. B
70
,
235121
(
2004
).
31.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
32.
I. G.
Buda
,
C.
Lane
,
B.
Barbiellini
,
A.
Ruzsinszky
,
J.
Sun
, and
A.
Bansil
, “
Characterization of thin film materials using SCAN Meta-GGA, an accurate nonempirical density functional
,”
Sci. Rep.
7
,
44766
(
2017
).
You do not currently have access to this content.