Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300–400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

1.
J.
Yang
and
T.
Caillat
,
MRS Bull.
31
,
224
229
(
2006
).
2.
3.
G. L.
Bennett
,
Energy Convers. Manage.
49
(
3
),
382
392
(
2008
).
4.
Z.
Chandler
,
S.
Bux
,
C. K.
Huang
,
J.
Patel
,
J. P.
Fleurial
, and
T.
Caillat
, see http://digitalcommon.calpoly.edu/star/a51/ for “
Impact of neutron irradiation on the thermoelectric properties of rare earth-based thermoelectric materials
” (
2012
).
5.
L. W.
Hobbs
,
F. W.
Clinard
, Jr.
,
S. J.
Zinkle
, and
R. C.
Ewing
,
J. Nucl. Mater.
216
,
291
321
(
1994
).
6.
S. J.
Zinkle
and
N. M.
Ghoniem
,
Fusion Eng. Des.
51–52
,
55
71
(
2000
).
7.
B.
Evans
,
J. Nucl. Mater.
219
,
202
223
(
1995
).
8.
L. L.
Snead
,
T.
Nozawa
,
Y.
Katoh
,
T. S.
Byun
,
S.
Kondo
, and
D. A.
Petti
,
J. Nucl. Mater.
371
,
329
377
(
2007
).
9.
J. W.
Winslow
and
R. R.
Hart
, “
Radiation effect in thermoelectrics
,” Report No. USNRDL-TR-581,
1962
.
10.
W. J.
Parker
,
R. J.
Jenkins
,
C. P.
Butler
, and
G. L.
Abbott
,
J. Appl. Phys.
32
,
1679
(
1961
).
11.
R. D.
Cowan
,
J. Appl. Phys.
34
,
926
(
1963
).
12.
L. M.
Clark
and
R. E.
Taylor
,
J. Appl. Phys.
46
,
714
(
1975
).
13.
H.
Wang
,
W. D.
Porter
,
H.
Böttner
,
J. D.
König
,
L.
Chen
,
S. Q.
Bai
,
T. M.
Tritt
,
A.
Mayolet
,
J.
Senawiratne
,
C.
Smith
,
F.
Harris
,
P.
Gilbert
,
J. W.
Sharp
,
J.
Lo
,
H.
Kleinke
, and
L.
Kiss
,
J. Electron. Mater.
42
,
654
(
2013
).
14.
H.
Wang
,
W. D.
Porter
,
H.
Böttner
,
J. D.
König
,
L.
Chen
,
S. Q.
Bai
,
T. M.
Tritt
,
A.
Mayolet
,
J.
Senawiratne
,
C.
Smith
,
F.
Harris
,
P.
Gilbert
,
J. W.
Sharp
,
J.
Lo
,
H.
Kleinke
, and
L.
Kiss
,
J. Electron. Mater.
42
,
1073
(
2013
).
15.
A.
Hashibon
and
C.
Elsasser
, “
Density-functional theory study of point defects in Be2Te3
,” in
Thermoelectric Bi2Te3 Nanomaterials
, 1st ed., edited by
O. E. K.
Neilson
,
N.
Peranio
, and
F.
Volkein
(
Wiley-VCH
,
2015
), pp.
167
186
.
16.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamamoto
, and
G. J.
Snyder
,
Science
321
,
554
(
2008
).
17.
H.
Scherrer
and
S.
Scherrer
, in
Thermoelectrics Handbook Macro to Nano
, edited by
D. M.
Rowe
(
CRC Taylor & Francis
,
2005
).
You do not currently have access to this content.