Recent works have demonstrated the potential of small-scale membrane-type acoustic metamaterials for low-frequency (<500 Hz) noise control. Such a phenomenon is attributed to the resonant behavior of the overhanging membrane in each unit cell. Considering industrial applications, large-scale designs may be preferred. This study presents a large-scale (0.8 × 0.8 m2) membrane-type acoustic metamaterial (or the meta-panel), which was evaluated experimentally and verified numerically. Experimental results showed that a broadband sound transmission loss (STL) improvement could be achieved by the incorporated membrane (up to 7.4 dB at 380 Hz). Numerically, parametric studies showed that the broadband STL performance of the meta-panel was due to not only the resonant behavior of the overhanging membrane but also the resonant behavior of the sandwiched membrane along the boundaries of the unit cells. If properly designed, this resonant behavior of the sandwiched membrane could complement membrane-type acoustic metamaterials to achieve an extended good STL performance across a broader frequency bandwidth.

1.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
(
80
),
1734
(
2000
).
2.
X.
Wang
,
H.
Zhao
,
X.
Luo
, and
Z.
Huang
,
Appl. Phys. Lett.
108
,
41905
(
2016
).
3.
N.
Sui
,
X.
Yan
,
T. Y.
Huang
,
J.
Xu
,
F. G.
Yuan
, and
Y.
Jing
,
Appl. Phys. Lett.
106
,
171905
(
2015
).
4.
L.
Fan
,
Z.
Chen
,
S. Y.
Zhang
,
J.
Ding
,
X.
Li
, and
H.
Zhang
,
Appl. Phys. Lett.
106
,
151908
(
2015
).
5.
G.
Ma
,
M.
Yang
,
Z.
Yang
, and
P.
Sheng
,
Appl. Phys. Lett.
103
,
11903
(
2013
).
6.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
,
Nat. Commun.
3
,
756
(
2012
).
7.
M.
Yang
,
G.
Ma
,
Z.
Yang
, and
P.
Sheng
,
Phys. Rev. Lett.
110
,
134301
(
2013
).
8.
R. P.
Moiseyenko
,
Y.
Pennec
,
R.
Marchal
,
B.
Bonello
, and
B.
Djafari-Rouhani
,
Phys. Rev. B
90
,
134307
(
2014
).
9.
Y.
Pennec
,
B.
Djafari-Rouhani
,
H.
Larabi
,
A.
Akjouj
, and
G.
Leveque
,
New J. Phys.
14
,
73039
(
2012
).
10.
F.
Langfeldt
,
J.
Riecken
,
W.
Gleine
, and
O.
von Estorff
,
J. Sound Vib.
373
,
1
(
2016
).
11.
Z.
Yang
,
H. M.
Dai
,
N. H.
Chan
,
G.
Ma
, and
P.
Sheng
,
Appl. Phys. Lett.
96
,
41906
(
2010
).
12.
L. Y. L.
Ang
,
Y. K.
Koh
, and
H. P.
Lee
,
Int. J. Appl. Mech.
8
,
1650072
(
2016
).
13.
H.
Zhang
,
Y.
Xiao
,
J.
Wen
,
D.
Yu
, and
X.
Wen
,
Appl. Phys. Lett.
108
,
141902
(
2016
).
14.
S.
Xiao
,
G.
Ma
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
,
Appl. Phys. Lett.
106
,
91904
(
2015
).
15.
X.
Chen
,
X.
Xu
,
S.
Ai
,
H.
Chen
,
Y.
Pei
, and
X.
Zhou
,
Appl. Phys. Lett.
105
,
71913
(
2014
).
16.
S. A.
Cummer
,
J. C.
Christensen
, and
A.
Alu
,
Nat. Rev. Mater.
1
,
16001
(
2016
).
17.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
, and
S. R.
Nutt
,
J. Appl. Phys.
108
,
114905
(
2010
).
18.
F.
Ma
,
J. H.
Wu
, and
M.
Huang
,
J. Phys. D: Appl. Phys.
48
,
465305
(
2015
).
19.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
, and
S. R.
Nutt
,
J. Appl. Phys.
110
,
124903
(
2011
).
20.
Y.
Zhang
,
J.
Wen
,
H.
Zhao
,
D.
Yu
,
L.
Cai
, and
X.
Wen
,
J. Appl. Phys.
114
,
63515
(
2013
).
21.
F.
Ma
,
M.
Huang
, and
J. H.
Wu
,
J. Appl. Phys.
121
,
15102
(
2017
).
22.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
,
F.
Scheulen
, and
S. R.
Nutt
,
J. Appl. Phys.
109
,
104902
(
2011
).
23.
F.
Ma
,
J. H.
Wu
,
M.
Huang
,
W.
Zhang
, and
S.
Zhang
,
J. Phys. D: Appl. Phys.
48
,
175105
(
2015
).
24.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
, and
S. R.
Nutt
,
J. Acoust. Soc. Am.
132
,
2784
(
2012
).
25.
S.
Varanasi
,
J. S.
Bolton
,
T. H.
Siegmund
, and
R. J.
Cipra
,
Appl. Acoust.
74
,
485
(
2013
).
26.
S.
Varanasi
,
J. S.
Bolton
, and
T. H.
Siegmund
,
J. Acoust. Soc. Am.
141
,
602
(
2017
).
27.
F.
Langfeldt
,
W.
Gleine
, and
O.
von Estorff
, in
Proceedings of the INTER-NOISE 2016
(
Hamburg
,
Germany
,
2016
), pp.
7551
7562
.
28.
SAE International: J1400-2010
,
Laboratory Measurement of the Airborne Sound Barrier Performance of Flat Materials and Assemblies
(
SAE International
,
Warrendale, Pennsylvania
,
2010
).
29.
R.
Galgalikar
and
L. L.
Thompson
,
J. Vib. Acoust.
138
,
51005
(
2016
).
30.
SIMULIA
,
Abaqus Analysis User's Guide
(
SIMULIA
,
Providence, Rhode Island
,
2016
).
31.
A.
Craggs
, in
Handbook of Acoustics
, edited by
M. J.
Crocker
, 3rd ed. (
John Wiley & Sons
,
New York, USA
,
1998
), pp.
149
156
.
32.
S.
Marburg
,
J. Comput. Acoust.
10
,
25
(
2002
).
33.
N.
Atalla
and
R. J.
Bernhard
,
Appl. Acoust.
43
,
271
(
1994
).
34.
R. D.
Cook
,
D. S.
Malkus
,
M. E.
Plesha
, and
R. J.
Witt
,
Concepts and Applications of Finite Element Analysis
, 4th ed. (
John Wiley & Sons
,
New York, USA
,
2002
).
35.
C. M.
Mak
and
Z.
Wang
,
Build. Environ.
91
,
118
(
2015
).
36.
C. Y.
Wang
and
C. M.
Wang
,
Structural Vibration: Exact Solutions for Strings, Membranes, Beams, Plates
(
CRC Press
,
Florida, USA
,
2014
), pp.
33
70
.
37.
A.
Peiffer
,
M.
Grunewald
, and
P.
Lempereur
,
Appl. Phys. Lett.
107
,
216101
(
2015
).
38.
M. L.
Munjal
, in
Noise and Vibration Control
, edited by
G.
Misra
(
World Scientific
,
Singapore
,
2013
), pp.
80
117
.
You do not currently have access to this content.