Threshold voltage instabilities are examined in self-aligned E/D-mode n++ GaN/InAlN/GaN MOS HEMTs with a gate length of 2 μm and a source-drain spacing of 10 μm integrated in a logic invertor. The E-mode MOS HEMT technology is based on selective dry etching of the cap layer which is combined with Al2O3 grown by atomic-layer deposition at 380 K. In the D-mode MOS HEMT, the gate recessing is skipped. The nominal threshold voltage (VT) of E/D-mode MOS HEMTs was 0.6 and −3.4 V, respectively; the technology invariant maximal drain current was about 0.45 A/mm. Analysis after 580 K/15 min annealing step and at an elevated temperature up to 430 K reveals opposite device behavior depending on the HEMT operational mode. It was found that the annealing step decreases VT of the D-mode HEMT due to a reduced electron injection into the modified oxide. On the other hand, VT of the E-mode HEMT increases with reduced density of surface donors at the oxide/InAlN interface. Operation at the elevated temperature produces reversible changes: increase/decrease in the VT of the respective D-/E-mode HEMTs. Additional bias-induced experiments exhibit complex trapping phenomena in the devices: Coaction of shallow (∼0.1 eV below EC) traps in the GaN buffer and deep levels at the oxide/InAlN interface was identified for the E-mode device, while trapping in the D-mode HEMTs was found to be consistent with a thermo-ionic injection of electrons into bulk oxide traps (∼0.14 eV above EF) and trapping at the oxide/GaN cap interface states.

2.
K.
Shinohara
,
D.
Regan
,
Y.
Tang
,
A. L.
Corrion
,
D.
Brown
,
J. C.
Wong
,
J. F.
Robinson
,
H. H.
Fung
,
A.
Schmitz
,
D.
Le
,
T. C.
Oh
,
S. J.
Kim
,
P. S.
Chen
,
R. G.
Nagele
,
A. D.
Margomenos
, and
M.
Micovic
,
IEEE Trans. Electron Devices
60
,
2982
(
2013
).
3.
M. L.
Schuette
,
A.
Ketterson
,
B.
Song
,
E.
Beam
,
T.-M.
Chou
,
M.
Pilla
,
H.-Q.
Tserng
,
X.
Gao
,
S.
Guo
,
P. J.
Fay
,
H. G.
Xing
, and
P.
Saunier
,
IEEE Electron Device Lett.
34
,
741
(
2013
).
4.
M.
Blaho
,
D.
Gregušová
,
Š.
Haščík
,
M.
Jurkovič
,
M.
Ťapajna
,
K.
Fröhlich
,
J.
Dérer
,
J.-F.
Carlin
,
N.
Grandjean
, and
J.
Kuzmík
,
Phys. Status Solidi A
212
,
1086
(
2015
).
5.
M.
Blaho
,
D.
Gregušová
,
Š.
Haščík
,
A.
Seifertová
,
M.
Ťapajna
,
J.
Šoltýs
,
A.
Šatka
,
L.
Nagy
,
A.
Chvála
,
J.
Marek
,
J.-F.
Carlin
,
N.
Grandjean
,
G.
Konstantinidis
, and
J.
Kuzmík
,
Semicond. Sci. Technol.
31
,
065011
(
2016
).
6.
K.
Ooyama
,
H.
Kato
,
M.
Miczek
, and
T.
Hashizume
,
Jpn. J. Appl. Phys.
47
,
5426
(
2008
).
7.
C.
Mizue
,
Y.
Hori
,
M.
Miczek
, and
T.
Hashizume
,
Jpn. J. Appl. Phys.
50
,
021001
(
2011
).
8.
P.
Lagger
,
C.
Ostermaier
,
G.
Pobegen
, and
D.
Pogany
,
IEEE International Electron Device Meeting Technical Digest
(
2012
), p.
13.1.1
.
9.
M.
Ťapajna
,
M.
Jurkovič
,
L.
Válik
,
Š.
Haščík
,
D.
Gregušová
,
F.
Brunner
,
E.-M.
Cho
, and
J.
Kuzmík
,
Appl. Phys. Lett.
102
,
243509
(
2013
).
10.
G.
Meneghesso
,
A.
Chini
,
A.
Zanoni
,
M.
Manfredi
,
M.
Pavesi
,
B.
Boudart
, and
C.
Gaquiere
,
IEEE International Electron Device Meeting Technical Digest
(
2000
), p.
16.5.1
.
11.
M.
Gonschorek
,
J.-F.
Carlin
,
E.
Feltin
,
M. A.
Py
, and
N.
Grandjean
,
Appl. Phys. Lett.
89
,
062106
(
2006
).
12.
M.
Blaho
,
D.
Gregušová
,
M.
Jurkovič
,
Š.
Haščík
,
J.
Fedor
,
P.
Kordoš
,
K.
Fröhlich
,
F.
Brunner
,
M.
Cho
,
O.
Hilt
,
J.
Würfl
, and
J.
Kuzmik
,
Microelectron. Eng.
112
,
204
(
2013
).
13.
M.
Ťapajna
,
L.
Válik
,
F.
Gucmann
,
D.
Gregušová
,
K.
Fröhlich
,
Š.
Haščík
,
E.
Dobročka
,
L.
Tóth
,
B.
Pécz
, and
J.
Kuzmík
,
J. Vac. Sci. Technol. B
35
,
01A107
(
2017
).
14.
I.-H.
Tan
,
G. L.
Snider
, and
E. L.
Hu
,
J. Appl. Phys.
68
,
4071
(
1990
).
15.
P.
Lagger
,
M.
Reiner
,
D.
Pogany
, and
C.
Ostermaier
,
IEEE Trans. Electron Devices
61
,
1022
(
2014
).
16.
X.
Sun
,
Y.
Zhang
,
K. S.
Chang-Liao
,
T.
Palacios
, and
T. P.
Ma
,
IEEE International Electron Device Meeting Technical Digest
(
2014
), p.
17.3.1
.
17.
J.
Robertson
and
B.
Falabretti
,
J. Appl. Phys.
100
,
014111
(
2006
).
18.
D. C.
Look
,
G. C.
Farlow
,
P. J.
Drevinsky
,
D. F.
Bliss
, and
J. R.
Sizelove
,
Appl. Phys. Lett.
83
,
3525
(
2003
).
19.
M.
Ťapajna
and
J.
Kuzmik
,
Appl. Phys. Lett.
100
,
113509
(
2012
).
You do not currently have access to this content.