Electrical performance of a graphene FET is drastically affected by electron-phonon inelastic scattering. At high electric fields, the out-of-equilibrium population of optical phonons equilibrates by emitting acoustic phonons, which dissipate the energy to heat sinks. The equilibration time of the process is governed by thermal diffusion time, which is few nano-seconds for a typical graphene FET. The nano-second time-scale of the process keeps it elusive to conventional steady-state or DC measurement systems. Here, we employ a time-domain reflectometry-based technique to electrically probe the device for few nano-seconds and investigate the non-equilibrium state. For the first time, the transient nature of electrical transport through graphene FET is revealed. A maximum change of 35% in current and 50% in contact resistance is recorded over a time span of 8 ns, while operating graphene FET at a current density of 1 mA/μm. The study highlights the role of intrinsic heating (scattering) in deciding metal-graphene contact resistance and transport through the graphene channel.

1.
X.
Du
,
I.
Skachko
,
A.
Barker
, and
E. Y.
Andrei
,
Nat. Nanotechnol.
3
,
491
(
2008
).
2.
J. H.
Seol
,
I.
Jo
,
A. L.
Moore
,
L.
Lindsay
,
Z. H.
Aitken
,
M. T.
Pettes
,
X.
Li
,
Z.
Yao
,
R.
Huang
,
D.
Broido
,
N.
Mingo
,
R. S.
Ruoff
, and
L.
Shi
,
Science
328
,
213
(
2010
).
3.
S.
Ichinokura
,
K.
Sugawara
,
A.
Takayama
,
T.
Takahashi
, and
S.
Hasegawa
,
ACS Nano
10
,
2761
(
2016
).
4.
K. S.
Novoselov
,
Z.
Jiang
,
Y.
Zhang
,
S. V.
Morozov
,
H. L.
Stormer
,
U.
Zeitler
,
J. C.
Maan
,
G. S.
Boebinger
,
P.
Kim
, and
A. K.
Geim
,
Science
315
,
1379
(
2007
).
5.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
6.
L. A.
Ponomarenko
,
F.
Schedin
,
M. I.
Katsnelson
,
R.
Yang
,
E. W.
Hill
,
K. S.
Novoselov
, and
A. K.
Geim
,
Science
320
,
356
(
2008
).
7.
E.
Pop
,
S.
Sinha
, and
K. E.
Goodson
,
Proc. IEEE
94
,
1587
(
2006
).
8.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
, in
2009 IEEE International Electron Devices Meeting (IEDM)
(
2009
), pp.
1
4
.
9.
F.
Xia
,
V.
Perebeinos
,
Y.-M.
Lin
,
Y.
Wu
, and
P.
Avouris
,
Nat. Nanotechnol.
6
,
179
(
2011
).
10.
Z.-Y.
Ong
and
E.
Pop
,
Phys. Rev. B
84
,
075471
(
2011
).
11.
J.
Jiang
,
J.
Kang
,
W.
Cao
,
X.
Xie
,
H.
Zhang
,
J. H.
Chu
,
W.
Liu
, and
K.
Banerjee
,
Nano Lett.
17
,
1482
1488
(
2017
).
12.
J.
Zheng
,
L.
Wang
,
R.
Quhe
,
Q.
Liu
,
H.
Li
,
D.
Yu
,
W.-N.
Mei
,
J.
Shi
,
Z.
Gao
, and
J.
Lu
,
Sci. Rep.
3
,
1314
(
2013
).
13.
H.
Cabrera
,
D.
Mendoza
,
J.
Benítez
,
C. B.
Flores
,
S.
Alvarado
, and
E.
Marín
,
J. Phys. D: Appl. Phys.
48
,
465501
(
2015
).
14.
M.
Berger
and
G.
Burbach
, in
1991 IEEE International SOI Conference Proceedings
(
1991
), pp.
24
25
.
15.
Z.
Xu
and
M. J.
Buehler
,
J. Phys.: Condens. Matter
24
,
475305
(
2012
).
16.
Y. G.
Lee
,
C. G.
Kang
,
U. J.
Jung
,
J. J.
Kim
,
H. J.
Hwang
,
H.-J.
Chung
,
S.
Seo
,
R.
Choi
, and
B. H.
Lee
,
Appl. Phys. Lett.
98
,
183508
(
2011
).
17.
K.
Majumdar
,
S.
Kallatt
, and
N.
Bhat
,
Appl. Phys. Lett.
101
,
123505
(
2012
).
18.
I.
Meric
,
C. R.
Dean
,
A. F.
Young
,
N.
Baklitskaya
,
N. J.
Tremblay
,
C.
Nuckolls
,
P.
Kim
, and
K. L.
Shepard
,
Nano Lett.
11
,
1093
(
2011
).
19.
H.
Ramamoorthy
,
R.
Somphonsane
,
J.
Radice
,
G.
He
,
C.-P.
Kwan
, and
J. P.
Bird
,
Nano Lett.
16
,
399
(
2016
).
20.
Y.
Wang
,
K. P.
Cheung
,
R.
Choi
,
G. A.
Brown
, and
B. H.
Lee
,
IEEE Electron Device Lett.
28
,
279
(
2007
).
21.
A. D.
Liao
,
J. Z.
Wu
,
X.
Wang
,
K.
Tahy
,
D.
Jena
,
H.
Dai
, and
E.
Pop
,
Phys. Rev. Lett.
106
,
256801
(
2011
).
22.
M.
Freitag
,
M.
Steiner
,
Y.
Martin
,
V.
Perebeinos
,
Z.
Chen
,
J. C.
Tsang
, and
P.
Avouris
,
Nano Lett.
9
,
1883
(
2009
).
23.
M.-H.
Bae
,
S.
Islam
,
V. E.
Dorgan
, and
E.
Pop
,
ACS Nano
5
,
7936
(
2011
).
24.
S.
Islam
,
Z.
Li
,
V. E.
Dorgan
,
M. H.
Bae
, and
E.
Pop
,
IEEE Electron Device Lett.
34
,
166
(
2013
).
25.
A.
Meersha
,
H. B.
Variar
,
K.
Bhardwaj
,
A.
Mishra
,
S.
Raghavan
,
N.
Bhat
, and
M.
Shrivastava
, in
2016 IEEE International Electron Devices Meeting (IEDM)
(
2016
), pp.
5.3.1
5.3.4
.
26.
M.
Ghatge
and
M.
Shrivastava
,
IEEE Trans. Electron Devices
62
,
4139
(
2015
).
27.
Q.
Shao
,
G.
Liu
,
D.
Teweldebrhan
, and
A. A.
Balandin
,
Appl. Phys. Lett.
92
,
202108
(
2008
).
28.
Y.
Yin
,
Z.
Cheng
,
L.
Wang
,
K.
Jin
, and
W.
Wang
,
Sci. Rep.
4
,
5758
(
2014
).
29.
J.
Martin
,
N.
Akerman
,
G.
Ulbricht
,
T.
Lohmann
,
J. H.
Smet
,
K.
von Klitzing
, and
A.
Yacoby
,
Nat. Phys.
4
,
144
(
2008
).
30.
S.
Sarkar
,
K. R.
Amin
,
R.
Modak
,
A.
Singh
,
S.
Mukerjee
, and
A.
Bid
,
Sci. Rep.
5
,
16772
(
2015
).
31.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
,
MRS Bull.
37
,
1273
(
2012
).
32.
X.
Li
,
E. A.
Barry
,
J. M.
Zavada
,
M. B.
Nardelli
, and
K. W.
Kim
,
Appl. Phys. Lett.
97
,
232105
(
2010
).
33.
Z.
Yao
,
C. L.
Kane
, and
C.
Dekker
,
Phys. Rev. Lett.
84
,
2941
(
2000
).
34.
T. E.
Beechem
,
R. A.
Shaffer
,
J.
Nogan
,
T.
Ohta
,
A. B.
Hamilton
,
A. E.
McDonald
, and
S. W.
Howell
,
Sci. Rep.
6
,
26457
(
2016
).
You do not currently have access to this content.