The magnetization dynamics of a multilayer rhomboid shaped nanomagnet pair is investigated using micro-focused Brillouin light scattering spectroscopy. The multilayer structure consists of two permalloy layers separated by a nonmagnetic Cr spacer layer. As compared with a single-layer rhomboid shaped nanomagnet pair with two distinct magnetic ground states (ferromagnetic and antiferromagnetic), the multilayer nanomagnetic pair displays multiple magnetic ground states upon different initialization fields due to the presence of both in-plane and out-of-plane dipolar coupling. The dynamic response as a function of initialization field has been systematically investigated. Distinct microwave absorption behavior and resonance frequency shift are observed when the nanomagnet pair is switched into different magnetic ground states. Micromagnetic simulations validate our experimental observations.

1.
R. L.
Stamps
,
S.
Breitkreutz
,
J.
Åkerman
,
A. V.
Chumak
,
Y.
Otani
,
G. E. W.
Bauer
,
J.-U.
Thiele
,
M.
Bowen
,
S. A.
Majetich
,
M.
Kläui
,
I. L.
Prejbeanu
,
B.
Dieny
,
N. M.
Dempsey
, and
B.
Hillebrands
,
J. Phys. D: Appl. Phys.
47
,
333001
(
2014
).
2.
M.
Krawczyk
and
D.
Grundler
,
J. Phys.: Condens. Matter
26
,
123202
(
2014
).
3.
M. T.
Niemier
,
G. H.
Bernstein
,
G.
Csaba
,
A.
Dingler
,
X. S.
Hu
,
S.
Kurtz
,
S.
Liu
,
J.
Nahas
,
W.
Porod
,
M.
Siddiq
, and
E.
Varga
,
J. Phys.: Condens. Matter
23
,
493202
(
2011
).
4.
A.
Haldar
,
D.
Kumar
, and
A. O.
Adeyeye
,
Nat. Nanotechnol.
11
,
437
(
2016
).
5.
M. P.
Kostylev
,
A. A.
Serga
,
T.
Schneider
,
B.
Leven
, and
B.
Hillebrands
,
Appl. Phys. Lett.
87
,
153501
(
2005
).
6.
T.
Schneider
,
A. A.
Serga
,
B.
Leven
,
B.
Hillebrands
,
R. L.
Stamps
, and
M. P.
Kostylev
,
Appl. Phys. Lett.
92
,
022505
(
2008
).
7.
S.
Wintz
,
V.
Tiberkevich
,
M.
Weigand
,
J.
Raabe
,
J.
Lindner
,
A.
Erbe
,
A.
Slavin
, and
J.
Fassbender
,
Nat. Nanotechnol.
11
,
948
(
2016
).
8.
A. V.
Chumak
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Commun.
5
,
4700
(
2014
).
9.
K.
Wagner
,
A.
Kakay
,
K.
Schultheiss
,
A.
Henschke
,
T.
Sebastian
, and
H.
Schultheiss
,
Nat. Nanotechnol.
11
,
432
(
2016
).
10.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
,
Science
309
,
1688
(
2005
).
11.
D.
Kumar
,
S.
Barman
, and
A.
Barman
,
Sci. Rep.
4
,
4108
(
2014
).
12.
J.
Ding
and
A. O.
Adeyeye
,
Appl. Phys. Lett.
101
,
103117
(
2012
).
13.
J.
Ding
,
M.
Kostylev
, and
A. O.
Adeyeye
,
Appl. Phys. Lett.
100
,
073114
(
2012
).
14.
N.
D'Souza
,
J.
Atulasimha
, and
S.
Bandyopadhyay
,
J. Phys. D: Appl. Phys.
44
,
265001
(
2011
).
15.
Y.
Kobljanskyj
,
G.
Melkov
,
K.
Guslienko
,
V.
Novosad
,
S. D.
Bader
,
M.
Kostylev
, and
A.
Slavin
,
Sci. Rep.
2
,
478
(
2012
).
16.
M.
Vogel
,
A. V.
Chumak
,
E. H.
Waller
,
T.
Langner
,
V. I.
Vasyuchka
,
B.
Hillebrands
, and
G.
von Freymann
,
Nat. Phys.
11
,
487
(
2015
).
17.
A.
Haldar
and
A. O.
Adeyeye
,
ACS Nano
10
,
1690
(
2016
).
18.
A.
Haldar
and
A. O.
Adeyeye
,
Appl. Phys. Lett.
108
,
022405
(
2016
).
19.
C.
Tian
and
A. O.
Adeyeye
,
Appl. Phys. Lett.
111
,
152404
(
2017
).
20.
M. J.
Donahue
and
D. G.
Porter
,
Interagency Report No. NISTIR 6376
, National Institute of Standards and Technology, Gaithersburg, MD,
1999
.
21.
S. O.
Demokritov
and
V. E.
Demidov
,
IEEE Trans. Magn.
44
,
6
(
2008
).
22.
T.
Sebastian
,
K.
Schultheiss
,
B.
Obry
,
B.
Hillebrands
, and
H.
Schultheiss
,
Front. Phys.
3
,
35
(
2015
).
You do not currently have access to this content.