We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.

1.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F. N.
Van Dau
,
F.
Petroff
,
P.
Etienne
,
G.
Creuzet
,
A.
Friederich
, and
J.
Chazelas
,
Phys. Rev. Lett.
61
,
2472
(
1988
).
2.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
,
Phys. Rev. B
39
,
4828
(
1989
).
3.
J. S.
Moodera
,
L. R.
Kinder
,
T. M.
Wong
, and
R.
Meservey
,
Phys. Rev. Lett.
74
,
3273
(
1995
).
4.
T.
Miyazaki
and
N.
Tezuka
,
J. Magn. Magn. Mater.
139
,
L231
(
1995
).
5.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
6.
7.
A.
Brataas
,
A. D.
Kent
, and
H.
Ohno
,
Nat. Mater.
11
,
372
(
2012
).
8.
I. L.
Prejbeanu
,
W.
Kula
,
K.
Ounadjela
,
R. C.
Sousa
,
O.
Redon
,
B.
Dieny
, and
J.-P.
Noziéres
,
IEEE Trans. Magn.
40
,
2625
(
2004
).
9.
I. L.
Prejbeanu
,
M.
Kerekes
,
R. C.
Sousa
,
H.
Sibuet
,
O.
Redon
,
B.
Dieny
, and
J.-P.
Noziéres
,
J. Phys.: Condens. Matter
19
,
165218
(
2007
).
10.
I. L.
Prejbeanu
,
S.
Bandiera
,
J.
Alvarez-Heŕault
,
R. C.
Sousa
,
B.
Dieny
, and
J.-P.
Noziéres
,
J. Phys. D: Appl. Phys.
46
,
074002
(
2013
).
11.
J.-U.
Thiele
,
T.
Hauet
, and
O.
Hellwig
,
Appl. Phys. Lett.
92
,
242502
(
2008
).
12.
S.
Andersson
and
V.
Korenivski
,
J. Appl. Phys.
107
,
09D711
(
2010
).
13.
A. M.
Kadigrobov
,
S.
Andersson
,
D.
Radić
,
R. I.
Shekhter
,
M.
Jonson
, and
V.
Korenivski
,
J. Appl. Phys.
107
,
123706
(
2010
).
14.
J. C.
Slonczewski
,
Phys. Rev. B
82
,
054403
(
2010
).
15.
A. F.
Kravets
,
A. N.
Timoshevskii
,
B. Z.
Yanchitsky
,
M. A.
Bergmann
,
J.
Buhler
,
S.
Andersson
, and
V.
Korenivski
,
Phys. Rev. B
86
,
214413
(
2012
).
16.
A. F.
Kravets
,
D. M.
Polishchuk
,
Y. I.
Dzhezherya
,
A. I.
Tovstolytkin
,
V. O.
Golub
, and
V.
Korenivski
,
Phys. Rev. B
94
,
064429
(
2016
).
17.
A. F.
Kravets
,
A. I.
Tovstolytkin
,
Y. I.
Dzhezherya
,
D. M.
Polishchuk
,
I. M.
Kozak
, and
V.
Korenivski
,
J. Phys.: Condens. Matter
27
,
446003
(
2015
).
18.
A. F.
Kravets
,
Y. I.
Dzhezherya
,
A. I.
Tovstolytkin
,
I. M.
Kozak
,
A.
Gryshchuk
,
Y. O.
Savina
,
V. A.
Pashchenko
,
S. L.
Gnatchenko
,
B.
Koop
, and
V.
Korenivski
,
Phys. Rev. B
90
,
104427
(
2014
).
19.
R. C.
Sousa
,
I. L.
Prejbeanu
,
D.
Stanescu
,
B.
Rodmacq
,
O.
Redon
,
B.
Dieny
,
J.
Wang
, and
P. P.
Freitas
,
J. Appl. Phys.
95
,
6783
(
2004
).
20.
J.
Akerman
,
M.
DeHerrera
,
J. M.
Slaughter
,
R.
Dave
,
J. J.
Sun
,
J. T.
Martin
, and
S.
Tehrani
,
IEEE Trans. Magn.
42
,
2661
(
2006
).
21.
B.
Oliver
,
G.
Tuttle
,
Q.
He
,
X.
Tang
, and
J.
Nowak
,
J. Appl. Phys.
95
,
1315
(
2004
).
22.
B. N.
Engel
,
J.
Akerman
,
B.
Butcher
,
R. W.
Dave
,
M.
DeHerrera
,
M.
Durlam
,
G.
Grynkewich
,
J.
Janesky
,
S. V.
Pietambaram
,
N. D.
Rizzo
,
J. M.
Slaughter
,
K.
Smith
,
J. J.
Sun
, and
S.
Tehrani
,
IEEE Trans. Magn.
41
,
132
(
2005
).
23.
V.
Korenivski
and
D. C.
Worledge
,
Appl. Phys. Lett.
86
,
252506
(
2005
).
24.
D.-H.
Kim
,
F.
Merget
,
M.
Först
, and
H.
Kurz
,
J. Appl. Phys.
101
,
064512
(
2007
).

Supplementary Material

You do not currently have access to this content.