We experimentally report the bidirectional reconfiguration of an out-of-plane deformable microcantilever based metamaterial for advanced and dynamic manipulation of terahertz waves. The microcantilever is made of a bimaterial stack with a large difference in the coefficient of thermal expansion of the constituent materials. This allows for the continuous deformation of microcantilevers in upward or downward direction in response to positive or negative temperature gradient, respectively. The fundamental resonance frequency of the fabricated microcantilever metamaterial is measured at 0.4 THz at room temperature of 293 K. With decreasing temperature, the resonance frequency continuously blue shifts by 30 GHz at 77 K. On the other hand, with increasing temperature, the resonance frequency gradually red shifts by 80 GHz and saturates at 0.32 THz for 400 K. Furthermore, as the temperature is increased above room temperature, which results in the downward actuation of the microcantilever, a significant resonance line-narrowing with an enhanced quality factor is observed due to tight field confinement in the metamaterial structure. The thermal control of the microcantilever possesses numerous inherent advantages such as enhanced tunable range (∼37.5% in this work compared to previously reported microcantilever metamaterials), continuous tunability, and repeatable operations. The microcantilever metamaterial also shows high robustness to operate at cryogenic conditions and hence opens up the possibility of using meta-devices in harsh environments such as space, polar, and deep sea applications.

1.
T.-J.
Yen
,
W.
Padilla
,
N.
Fang
,
D.
Vier
,
D.
Smith
,
J.
Pendry
,
D.
Basov
, and
X.
Zhang
,
Science
303
(
5663
),
1494
1496
(
2004
).
2.
M.
Choi
,
S. H.
Lee
,
Y.
Kim
,
S. B.
Kang
,
J.
Shin
,
M. H.
Kwak
,
K.-Y.
Kang
,
Y.-H.
Lee
,
N.
Park
, and
B.
Min
,
Nature
470
(
7334
),
369
(
2011
).
3.
H.
Tao
,
N. I.
Landy
,
C. M.
Bingham
,
X.
Zhang
,
R. D.
Averitt
, and
W. J.
Padilla
,
Opt. Express
16
(
10
),
7181
7188
(
2008
).
4.
E.
Plum
,
J.
Zhou
,
J.
Dong
,
V.
Fedotov
,
T.
Koschny
,
C.
Soukoulis
, and
N.
Zheludev
,
Phys. Rev. B
79
(
3
),
035407
(
2009
).
5.
S.-Y.
Chiam
,
R.
Singh
,
C.
Rockstuhl
,
F.
Lederer
,
W.
Zhang
, and
A. A.
Bettiol
,
Phys. Rev. B
80
(
15
),
153103
(
2009
).
6.
R.
Singh
,
C.
Rockstuhl
,
F.
Lederer
, and
W.
Zhang
,
Phys. Rev. B
79
(
8
),
085111
(
2009
).
7.
M.
Manjappa
,
S.-Y.
Chiam
,
L.
Cong
,
A. A.
Bettiol
,
W.
Zhang
, and
R.
Singh
,
Appl. Phys. Lett.
106
(
18
),
181101
(
2015
).
8.
M.
Manjappa
,
Y. K.
Srivastava
,
A.
Solanki
,
A.
Kumar
,
T. C.
Sum
, and
R.
Singh
,
Adv. Mater.
29
(
32
),
1605881
(
2017
).
9.
M.
Manjappa
,
Y. K.
Srivastava
, and
R.
Singh
,
Phys. Rev. B
94
(
16
),
161103
(
2016
).
10.
R.
Singh
,
I. A.
Al-Naib
,
M.
Koch
, and
W.
Zhang
,
Opt. Express
19
(
7
),
6312
6319
(
2011
).
11.
W.
Withayachumnankul
and
D.
Abbott
,
IEEE Photonics J.
1
(
2
),
99
118
(
2009
).
12.
K.
Fan
and
W. J.
Padilla
,
Mater. Today
18
(
1
),
39
50
(
2015
).
13.
W. J.
Padilla
,
A. J.
Taylor
,
C.
Highstrete
,
M.
Lee
, and
R. D.
Averitt
,
Phys. Rev. Lett.
96
(
10
),
107401
(
2006
).
14.
H.-T.
Chen
,
J. F.
O'hara
,
A. K.
Azad
,
A. J.
Taylor
,
R. D.
Averitt
,
D. B.
Shrekenhamer
, and
W. J.
Padilla
,
Nat. Photonics
2
(
5
),
295
298
(
2008
).
15.
J.
Han
and
A.
Lakhtakia
,
J. Mod. Opt.
56
(
4
),
554
557
(
2009
).
16.
Q.-Y.
Wen
,
H.-W.
Zhang
,
Q.-H.
Yang
,
Y.-S.
Xie
,
K.
Chen
, and
Y.-L.
Liu
,
Appl. Phys. Lett.
97
(
2
),
021111
(
2010
).
17.
H.-T.
Chen
,
W. J.
Padilla
,
J. M. O.
Zide
,
A. C.
Gossard
,
A. J.
Taylor
, and
R. D.
Averitt
,
Nature
444
(
7119
),
597
600
(
2006
).
18.
V.
Savinov
,
V. A.
Fedotov
,
S.
Anlage
,
P.
De Groot
, and
N. I.
Zheludev
,
Phys. Rev. Lett.
109
(
24
),
243904
(
2012
).
19.
B.
Jin
,
C.
Zhang
,
S.
Engelbrecht
,
A.
Pimenov
,
J.
Wu
,
Q.
Xu
,
C.
Cao
,
J.
Chen
,
W.
Xu
, and
L.
Kang
,
Opt. Express
18
(
16
),
17504
17509
(
2010
).
20.
R.
Singh
,
J.
Xiong
,
A. K.
Azad
,
H.
Yang
,
S. A.
Trugman
,
Q.
Jia
,
A. J.
Taylor
, and
H.-T.
Chen
,
Nanophotonics
1
(
1
),
117
123
(
2012
).
21.
H.
Tao
,
A.
Strikwerda
,
K.
Fan
,
W.
Padilla
,
X.
Zhang
, and
R.
Averitt
,
Phys. Rev. Lett.
103
(
14
),
147401
(
2009
).
22.
W. M.
Zhu
,
A. Q.
Liu
,
X. M.
Zhang
,
D. P.
Tsai
,
T.
Bourouina
,
J. H.
Teng
,
X. H.
Zhang
,
H. C.
Guo
,
H.
Tanoto
, and
T.
Mei
,
Adv. Mater.
23
(
15
),
1792
1796
(
2011
).
23.
A.
Liu
,
W.
Zhu
,
D.
Tsai
, and
N. I.
Zheludev
,
J. Opt.
14
(
11
),
114009
(
2012
).
24.
F.
Ma
,
Y.-S.
Lin
,
X.
Zhang
, and
C.
Lee
,
Light: Sci. Appl.
3
(
5
),
e171
(
2014
).
25.
P.
Pitchappa
,
M.
Manjappa
,
C. P.
Ho
,
R.
Singh
,
N.
Singh
, and
C.
Lee
,
Adv. Opt. Mater.
4
(
4
),
541
547
(
2016
).
26.
Z.
Han
,
K.
Kohno
,
H.
Fujita
,
K.
Hirakawa
, and
H.
Toshiyoshi
,
Opt. Express
22
(
18
),
21326
21339
(
2014
).
27.
P.
Pitchappa
,
C. P.
Ho
,
L.
Dhakar
, and
C.
Lee
,
Optica
2
(
6
),
571
578
(
2015
).
28.
X.
Zhao
,
K.
Fan
,
J.
Zhang
,
G. R.
Keiser
,
G.
Duan
,
R. D.
Averitt
, and
X.
Zhang
,
Microsyst. Nanoeng.
2
,
16025
(
2016
).
29.
T.
Matsui
,
Y.
Inose
,
D. A.
Powell
, and
I. V.
Shadrivov
,
Adv. Opt. Mater.
4
(
1
),
135
140
(
2016
).
30.
J.
Li
,
C. M.
Shah
,
W.
Withayachumnankul
,
B. S.-Y.
Ung
,
A.
Mitchell
,
S.
Sriram
,
M.
Bhaskaran
,
S.
Chang
, and
D.
Abbott
,
Appl. Phys. Lett.
102
(
12
),
121101
(
2013
).
31.
M.
Unlu
,
M.
Hashemi
,
C.
Berry
,
S.
Li
,
S.-H.
Yang
, and
M.
Jarrahi
,
Sci. Rep.
4
,
5708
(
2014
).
32.
P.
Pitchappa
,
C. P.
Ho
,
Y.
Qian
,
L.
Dhakar
,
N.
Singh
, and
C.
Lee
,
Sci. Rep.
5
,
11678
(
2015
).
33.
X.
Zhao
,
J.
Schalch
,
J.
Zhang
,
H. R.
Seren
,
G.
Duan
,
R. D.
Averitt
, and
X.
Zhang
,
in IEEE 30th International Conference on the Micro Electro Mechanical Systems (MEMS)
,
2017
.
34.
C. P.
Ho
,
P.
Pitchappa
,
Y.-S.
Lin
,
C.-Y.
Huang
,
P.
Kropelnicki
, and
C.
Lee
,
Appl. Phys. Lett.
104
(
16
),
161104
(
2014
).
35.
A.
Isozaki
,
T.
Kan
,
H.
Takahashi
,
K.
Matsumoto
, and
I.
Shimoyama
,
Opt. Express
23
(
20
),
26243
26251
(
2015
).
36.
T.
Kan
,
A.
Isozaki
,
N.
Kanda
,
N.
Nemoto
,
K.
Konishi
,
H.
Takahashi
,
M.
Kuwata-Gonokami
,
K.
Matsumoto
, and
I.
Shimoyama
,
Nat. Commun.
6
,
8422
(
2015
).
37.
P.
Pitchappa
,
C. P.
Ho
,
L.
Dhakar
,
Y.
Qian
,
N.
Singh
, and
C.
Lee
,
J. Microelectromech. Syst.
24
(
3
),
525
527
(
2015
).
38.
W.
Fang
and
C.-Y.
Lo
,
Sens. Actuators, A
84
(
3
),
310
314
(
2000
).
39.
D. C.
Miller
,
R. R.
Foster
,
S.-H.
Jen
,
J. A.
Bertrand
,
S. J.
Cunningham
,
A. S.
Morris
,
Y.-C.
Lee
,
S. M.
George
, and
M. L.
Dunn
,
Sens. Actuators, A
164
(
1
),
58
67
(
2010
).
40.
L.
Cong
,
M.
Manjappa
,
N.
Xu
,
I.
Al‐Naib
,
W.
Zhang
, and
R.
Singh
,
Adv. Opt. Mater.
3
(
11
),
1537
1543
(
2015
).
41.
W.
Padilla
,
M.
Aronsson
,
C.
Highstrete
,
M.
Lee
,
A.
Taylor
, and
R.
Averitt
,
Phys. Rev. B
75
(
4
),
041102
(
2007
).
42.
M.
Manjappa
,
S. P.
Turaga
,
Y. K.
Srivastava
,
A. A.
Bettiol
, and
R.
Singh
,
Opt. Lett.
42
(
11
),
2106
2109
(
2017
).
43.
R.
Singh
,
D.
Roy Chowdhury
,
J.
Xiong
,
H.
Yang
,
A. K.
Azad
,
A. J.
Taylor
,
Q.
Jia
, and
H.-T.
Chen
,
Appl. Phys. Lett.
103
(
6
),
061117
(
2013
).
You do not currently have access to this content.