Cooling nanoelectronic devices below 10 mK is a great challenge since thermal conductivities become very small, thus creating a pronounced sensitivity to heat leaks. Here, we overcome these difficulties by using adiabatic demagnetization of both the electronic leads and the large metallic islands of a Coulomb blockade thermometer. This reduces the external heat leak through the leads and also provides on-chip refrigeration, together cooling the thermometer down to 2.8 ± 0.1 mK. We present a thermal model which gives a good qualitative account and suggests that the main limitation is heating due to pulse tube vibrations. With better decoupling, temperatures below 1 mK should be within reach, thus opening the door for μK nanoelectronics.

1.
P.
Simon
and
D.
Loss
,
Phys. Rev. Lett.
98
,
156401
(
2007
).
2.
P.
Simon
,
B.
Braunecker
, and
D.
Loss
,
Phys. Rev. B
77
,
045108
(
2008
).
3.
C. P.
Scheller
,
T.-M.
Liu
,
G.
Barak
,
A.
Yacoby
,
L. N.
Pfeiffer
,
K. W.
West
, and
D. M.
Zumbühl
,
Phys. Rev. Lett.
112
,
066801
(
2014
).
4.
S.
Chesi
and
D.
Loss
,
Phys. Rev. Lett.
101
,
146803
(
2008
).
5.
W.
Pan
,
K. W.
Baldwin
,
K. W.
West
,
L. N.
Pfeiffer
, and
D. C.
Tsui
,
Phys. Rev. B
91
,
041301
(
2015
).
6.
N.
Samkharadze
,
I.
Arnold
,
L. N.
Pfeiffer
,
K. W.
West
, and
G. A.
Csáthy
,
Phys. Rev. B
91
,
081109
(
2015
).
7.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M. K.
Vandersypen
,
Rev. Mod. Phys.
79
,
1217
(
2007
).
8.
J.
Clarke
and
F. K.
Wilhelm
,
Nature
453
,
1031
(
2008
).
9.
M. H.
Devoret
and
R. J.
Schoelkopf
,
Science
339
,
1169
(
2013
).
10.
R. M.
Lutchyn
,
J. D.
Sau
, and
S.
Das Sarma
,
Phys. Rev. Lett.
105
,
077001
(
2010
).
11.
Y.
Oreg
,
G.
Refael
, and
F.
von Oppen
,
Phys. Rev. Lett.
105
,
177002
(
2010
).
12.
13.
V.
Mourik
,
K.
Zuo
,
S. M.
Frolov
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
,
Science
336
,
1003
(
2012
).
14.
A. C.
Clark
,
K. K.
Schwarzwälder
,
T.
Bandi
,
D.
Maradan
, and
D. M.
Zumbühl
,
Rev. Sci. Instrum.
81
,
103904
(
2010
).
15.
G. R.
Pickett
,
Rep. Prog. Phys.
51
,
1295
(
1988
).
16.
G.
Pickett
,
Phys. B: Condens. Matter
280
,
467
(
2000
).
17.
F.
Pobell
,
Matter and Methods at Low Temperatures
(
Springer
,
Berlin
,
2007
).
18.
L.
Casparis
,
M.
Meschke
,
D.
Maradan
,
A. C.
Clark
,
C. P.
Scheller
,
K. K.
Schwarzwälder
,
J. P.
Pekola
, and
D. M.
Zumbühl
,
Rev. Sci. Instrum.
83
,
083903
(
2012
).
19.
G.
Batey
,
A.
Casey
,
M. N.
Cuthbert
,
A. J.
Matthews
,
J.
Saunders
, and
A.
Shibahara
,
New J. Phys.
15
,
113034
(
2013
).
20.
D.
Maradan
,
L.
Casparis
,
T. M.
Liu
,
D. E. F.
Biesinger
,
C. P.
Scheller
,
D. M.
Zumbühl
,
J.
Zimmerman
, and
A. C.
Gossard
,
J. Low Temp. Phys.
175
,
784
(
2014
).
21.
A. V.
Feshchenko
,
L.
Casparis
,
I. M.
Khaymovich
,
D.
Maradan
,
O.-P.
Saira
,
M.
Palma
,
M.
Meschke
,
J. P.
Pekola
, and
D. M.
Zumbühl
,
Phys. Rev. Appl.
4
,
034001
(
2015
).
22.
D. I.
Bradley
,
R. E.
George
,
D.
Gunnarsson
,
R. P.
Haley
,
H.
Heikkinen
,
Y. A.
Pashkin
,
J.
Penttilä
,
J. R.
Prance
,
M.
Prunnila
,
L.
Roschier
, and
M.
Sarsby
,
Nat. Commun.
7
,
10455
(
2016
).
23.
Z.
Iftikhar
,
A.
Anthore
,
S.
Jezouin
,
F. D.
Parmentier
,
Y.
Jin
,
A.
Cavanna
,
A.
Ouerghi
,
U.
Gennser
, and
F.
Pierre
,
Nat. Commun.
7
,
12908
(
2016
).
24.
D. I.
Bradley
,
A. M.
Guenault
,
D.
Gunnarsson
,
R. P.
Haley
,
S.
Holt
,
A. T.
Jones
,
Y. A.
Pashkin
,
J.
Penttilä
,
J. R.
Prance
,
M.
Prunnila
, and
L.
Roschier
,
Sci. Rep.
7
,
45566
(
2017
).
25.
M.
Palma
,
D.
Maradan
,
L.
Casparis
,
T.-M.
Liu
,
F. N. M.
Froning
, and
D. M.
Zumbühl
,
Rev. Sci. Instrum.
88
,
043902
(
2017
).
26.
O.-P.
Saira
,
A.
Kemppinen
,
V. F.
Maisi
, and
J. P.
Pekola
,
Phys. Rev. B
85
,
012504
(
2012
).
27.
A. B.
Zorin
,
Rev. Sci. Instrum.
66
,
4296
(
1995
).
28.
J. P.
Pekola
,
K. P.
Hirvi
,
J. P.
Kauppinen
, and
M. A.
Paalanen
,
Phys. Rev. Lett.
73
,
2903
(
1994
).
29.
M.
Meschke
,
J. P.
Pekola
,
F.
Gay
,
R. E.
Rapp
, and
H.
Godfrin
,
J. Low Temp. Phys.
134
,
1119
(
2004
).
30.
C. P.
Scheller
,
S.
Heizmann
,
K.
Bedner
,
D.
Giss
,
M.
Meschke
,
D. M.
Zumbühl
,
J. D.
Zimmerman
, and
A. C.
Gossard
,
Appl. Phys. Lett.
104
,
211106
(
2014
).
31.
C.
Ciccarelli
,
R. P.
Campion
,
B. L.
Gallagher
, and
A. J.
Ferguson
,
Appl. Phys. Lett.
108
,
053103
(
2016
).
32.
BlueFors Cryogenics Oy Ltd., Helsinki, Finland.
33.
A. V.
Feshchenko
,
M.
Meschke
,
D.
Gunnarsson
,
M.
Prunnila
,
L.
Roschier
,
J. S.
Penttilä
, and
J. P.
Pekola
,
J. Low Temp. Phys.
173
,
36
(
2013
).
34.
G.-L.
Ingold
and
Y. V.
Nazarov
, “
Charge tunneling rates in ultrasmall junctions
,” in
Single Charge Tunneling,
NATO ASI Series B, Vol. 294, edited by
H.
Grabert
and
M. H.
Devoret
(
Plenum
,
1992
), pp.
21
107
.
35.
This requires careful input voltage drift stabilization as provided by our home built IV converter, particularly below 10 mK. Basel Electronics Lab, Physics Departement, University of Basel, Switzerland.
36.

This corresponds to a nuclear polarization of ≈40% in the Cu plates and ≈17% in the CBT islands.17 

37.
M.
Nahum
and
J. M.
Martinis
,
Appl. Phys. Lett.
63
,
3075
(
1993
).
38.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
39.

Static heat leak: 32 aW per CBT junction, corresponding to 5.4 nW/mol Cu, compared to typically 1–2 nW/mol Cu for the large plates. Dynamic heat leak: 485 aW per junction during AND, corresponding to 82 nW/mol Cu, compared to an estimated 30 nW/mol Cu for the large plates.25 

40.
I.
Todoshchenko
,
J.-P.
Kaikkonen
,
R.
Blaauwgeers
,
P. J.
Hakonen
, and
A.
Savin
,
Rev. Sci. Instrum.
85
,
085106
(
2014
).

Supplementary Material

You do not currently have access to this content.