Electroadhesion is a promising adhesion mechanism for robotics and material handling applications due to several distinctive advantages it has over existing technologies. These advantages include enhanced adaptability, gentle/flexible handling, reduced complexity, and ultra-low energy consumption. Unstable electroadhesive forces, however, can arise in ambient environments. Electroadhesive devices that can produce stable forces in changing environments are thus desirable. In this study, a flexible and environmentally stable electroadhesive device was designed and manufactured by conformally coating a layer of barium titanate dielectric on a chemically etched thin copper laminate. The results, obtained from an advanced electroadhesive “normal force” testing platform, show that only a relative difference of 5.94% in the normal force direction was observed. This was achieved when the relative humidity changed from 25% to 53%, temperature from 13.7 °C to 32.8 °C, and atmospheric pressure from 999 hPa to 1016.9 hPa. This environmentally stable electroadhesive device may promote the application of the electroadhesion technology.

1.
K.
Rahbek
, “
Electroadhesion apparatus
,” U.S. patent 2,025,123 (24 December
1935
).
2.
G.
Shim
and
H.
Sugai
,
Plasma Fusion Res.
3
,
51
(
2008
).
3.
J.
Shintake
,
S.
Rosset
,
B.
Schubert
,
D.
Floreano
, and
H.
Shea
,
Adv. Mater.
28
(
2
),
231
238
(
2016
).
4.
G. J.
Monkman
,
Int. J. Rob. Res.
14
(
2
),
144
151
(
1995
).
5.
R.
Liu
,
R.
Chen
,
H.
Shen
, and
R.
Zhang
,
Int. J. Adv. Rob. Syst.
10
(
36
),
1
9
(
2012
).
6.
M.
Graule
,
P.
Chirarattananon
,
S.
Fuller
,
N.
Jafferis
,
K.
Ma
,
M.
Spenko
,
R.
Kornbluh
, and
R.
Wood
,
Science
352
,
978
982
(
2016
).
7.
J.
Guo
,
L.
Justham
,
M.
Jackson
, and
R.
Parkin
,
Key Eng. Mater.
649
,
22
29
(
2015
).
8.
T.
Bamber
,
J.
Guo
,
J.
Singh
,
M.
Bigharaz
,
P. A.
Bingham
,
L.
Justham
,
J.
Petzing
,
J.
Penders
, and
M.
Jackson
,
J. Phys. D: Appl. Phys.
50
(
20
),
205304
(
2017
).
9.
J.
Guo
,
T.
Bamber
,
M.
Chamberlain
,
L.
Justham
, and
M.
Jackson
,
J. Phys. D: Appl. Phys.
49
(
41
),
415304
(
2016
).
10.
J.
Guo
,
T.
Bamber
,
J.
Pezting
,
L.
Justham
, and
M.
Jackson
,
Appl. Phys. Lett.
110
(
5
),
051602
(
2017
).
11.
K. H.
Koh
,
M.
Sreekumar
, and
S. G.
Ponnambalam
,
Materials
7
,
4963
4981
(
2014
).
12.
C.
Cao
,
X.
Sun
,
Y.
Fang
,
Q.
Qin
,
A.
Yu
, and
X.
Feng
,
Mater. Des.
89
,
485
491
(
2016
).
13.
D.
Ruffatto
,
J.
Shah
, and
M.
Spenko
,
J. Electrost.
72
(
2
),
147
155
(
2014
).
14.
J.
Guo
,
T.
Bamber
,
T.
Hovell
,
M.
Chamberlain
,
L.
Justham
, and
M.
Jackson
,
IFAC-PapersOnLine
49
(
21
),
309
315
(
2016
).
15.
J.
Guo
,
M.
Tailor
,
T.
Bamber
,
M.
Chamberlain
,
L.
Justham
, and
M.
Jackson
,
J. Phys. D: Appl. Phys.
49
(
3
),
35303
(
2016
).
16.
J.
Guo
,
T.
Bamber
,
M.
Chamberlain
,
L.
Justham
, and
M.
Jackson
,
IEEE Rob. Autom. Lett.
2
(
2
),
538
545
(
2017
).
17.
G. J.
Monkman
, “
Electrostatic techniques for fabric handling
,” M.Sc. thesis,
University of Hull
,
1987
.
18.
L.
Savioli
,
G.
Sguotti
,
A.
Francesconi
,
F.
Branz
,
J.
Krahn
, and
C.
Menon
,
Proc. SPIE
9061
,
906129
(
2014
).
19.
Aylesbury Automation Limited
, “
Electroadhesive gripper
,” UK patent application GB1608729.8 (18 May
2016
).
20.
D.
Sitko
,
W.
Bąk
,
B.
Garbarz-Glos
,
A.
Budziak
,
C.
Kajtoch
, and
A.
Kalvane
,
IOP Conf. Ser.: Mater. Sci. Eng.
49
,
012050
(
2013
).
21.
J.
Wang
,
B. K.
Xu
,
S. P.
Ruan
, and
S. P.
Wang
,
Mater. Chem. Phys.
78
(
3
),
746
750
(
2003
).
You do not currently have access to this content.