High-density and long-lived plasmonic hot-spots are an ideal system for high-sensitive surface-enhanced infrared absorption (SEIRA), but these conditions are usually incompatible due to unwanted near-field coupling between the adjacent unit structures. Here, by fully controlling plasmonic interference in a metamaterial lattice, we experimentally demonstrate densely packed long-lived quadrupole plasmons for high-sensitive SEIRA. The metamaterial consists of a strongly coupled array of super- and sub-radiant plasmonic elements to exhibit an electromagnetic transparency mode at 1730 cm−1, which spectrally overlaps with the C=O vibrational mode. In the SEIRA measurement, the C=O mode of poly(methyl methacrylate) molecules is clearly observed as a distinct dip within a transmission peak of the metamaterial. The corresponding numerical simulations reveal that constructive interference uniformly forms coherent quadrupole plasmons over the metamaterial lattice, leading to a stronger molecular signal from the system. Our metamaterial approach provides a robust way to construct ideal hot-spots over the sample, paving the way toward a reliable sensing platform of advanced infrared inspection technologies.

1.
S.
Lal
,
S.
Link
, and
N. J.
Halas
,
Nat. Photonics
1
,
641
(
2007
).
2.
J. A.
Schuller
,
E. S.
Barnard
,
W.
Cai
,
Y. C.
Jun
,
J. S.
White
, and
M. L.
Brongersma
,
Nat. Mater.
9
,
193
(
2010
).
3.
H. A.
Atwater
and
A.
Polman
,
Nat. Mater.
9
,
205
(
2010
).
4.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
,
Nat. Nanotechnol.
10
,
25
(
2015
).
5.
E.
Prodan
,
C.
Radloff
,
N. J.
Halas
, and
P.
Nordlander
,
Science
302
,
419
(
2003
).
6.
N.
Liu
,
H.
Guo
,
L.
Fu
,
S.
Kaiser
,
H.
Schweizer
, and
H.
Giessen
,
Adv. Mater.
19
,
3628
(
2007
).
7.
N.
Tate
,
H.
Sugiyama
,
M.
Naruse
,
W.
Nomura
,
T.
Yatsui
,
T.
Kawazoe
, and
M.
Ohtsu
,
Opt. Express
17
,
11113
(
2009
).
8.
M.
Hentschel
,
M.
Saliba
,
R.
Vogelgesang
,
H.
Giessen
,
A. P.
Alivisatos
, and
N.
Liu
,
Nano Lett.
10
,
2721
(
2010
).
10.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
,
Rev. Mod. Phys.
82
,
2257
(
2010
).
11.
B.
lukyanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
,
Nat. Mater.
9
,
707
(
2010
).
12.
A.
Christ
,
Y.
Ekinci
,
H. H.
Solak
,
N. A.
Gippius
,
S. G.
Tikhodeev
, and
O. J. F.
Martin
,
Phys. Rev. B
76
,
201405(R)
(
2007
).
13.
F.
Hao
,
P.
Nordlander
,
Y.
Sonnefraud
,
P. V.
Dorpe
, and
S. A.
Maier
,
ACS Nano
3
,
643
(
2009
).
14.
A.
Moreau
,
C.
Ciraci
,
J. J.
Mock
,
R. T.
Hill
,
Q.
Wang
,
B. J.
Wiley
,
A.
Chilkoti
, and
D. R.
Smith
,
Nature
492
,
86
(
2012
).
15.
T.
Søndergaard
,
S. M.
Novikov
,
T.
Holmgaard
,
R. L.
Eriksen
,
J.
Beermann
,
Z.
Han
,
K.
Pedersen
, and
S. I.
Bozhevolnyi
,
Nat. Commun.
3
,
969
(
2012
).
16.
C. M.
Soukoulis
,
S.
Linden
, and
M.
Wegener
,
Science
315
,
47
(
2007
).
17.
N. I.
Zheludev
and
Y. S.
Kivshar
,
Nat. Mater.
11
,
917
(
2012
).
18.
N.
Meinzer
,
W. L.
Barnes
, and
I. R.
Hooper
,
Nat. Photonics
8
,
889
(
2014
).
19.
W.
Cai
,
U. K.
Chettiar
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Nat. Photonics
1
,
224
(
2007
).
20.
M.
Choi
,
S. H.
Lee
,
Y.
Kim
,
S. B.
Kang
,
J.
Shin
,
M. H.
Kwak
,
K.-Y.
Kang
,
Y.-H.
Lee
,
N.
Park
, and
B.
Min
,
Nature
470
,
369
(
2011
).
21.
P.
Moitra
,
Y.
Yang
,
Z.
Anderson
,
I. I.
Kravchenko
,
D. P.
Briggs
, and
J.
Valentine
,
Nat. Photonics
7
,
791
(
2013
).
22.
R.
Maas
,
J.
Parsons
,
N.
Engheta
, and
A.
Polman
,
Nat. Photonics
7
,
907
(
2013
).
23.
H.
Suchowski
,
K.
O'Brien
,
Z. J.
Wong
,
A.
Salandrino
,
X.
Yin
, and
X.
Zhang
,
Science
342
,
1223
(
2013
).
24.
A. M.
Mahmoud
and
N.
Engheta
,
Nat. Commun.
5
,
5638
(
2014
).
25.
B.
Shen
,
R.
Polson
, and
R.
Menon
,
Adv. Nat. Commun.
7
,
13126
(
2016
).
26.
M.
Osawa
and
M.
Ikeda
,
J. Phys. Chem.
95
,
9914
(
1991
).
27.
T. R.
Jensen
,
R. P.
Van Duyne
,
S. A.
Johnson
, and
V. A.
Maroni
,
Appl. Spectrosc.
54
,
371
(
2000
).
28.
F.
Neubrech
,
A.
Pucci
,
T. W.
Cornelius
,
S.
Karim
,
A.
Garcia-Etxarri
, and
J.
Aizpurua
,
Phys. Rev. Lett.
101
,
157403
(
2008
).
29.
R.
Adato
,
A. A.
Yanik
,
J. J.
Amsden
,
D. L.
Kaplan
,
F. G.
Omenetto
,
M. K.
Hong
,
S.
Erramilli
, and
H.
Altug
,
Proc. Natl. Acad. Sci.
106
,
19227
(
2009
).
30.
E.
Hendry
,
T.
Carpy
,
J.
Johnston
,
M.
Popland
,
R. V.
Mikhaylovskiy
,
A. J.
Lapthorn
,
S. M.
Kelly
,
L. D.
Barron
,
N.
Gadegaard
, and
M.
Kadodwala
,
Nat. Nanotech.
5
,
783
(
2010
).
31.
C.
Wu
,
A. B.
Khanikaev
,
R.
Adato
,
N.
Arju
,
A. A.
Yanik
,
H.
Altug
, and
G.
Shvets
,
Nat. Mater.
11
,
69
(
2012
).
32.
L. V.
Brown
,
K.
Zhao
,
N.
King
,
H.
Sobhani
,
P.
Nordlander
, and
N. J.
Halas
,
J. Am. Chem. Soc.
135
,
3688
(
2013
).
33.
F.
Cheng
,
X.
Yang
, and
J.
Gao
,
Sci. Rep.
5
,
14327
(
2015
).
34.
A.
Ishikawa
and
T.
Tanaka
,
Sci. Rep.
5
,
12570
(
2015
).
35.
A.
Ishikawa
,
S.
Hara
,
T.
Tanaka
,
Y.
Hayashi
, and
K.
Tsuruta
,
Sci. Rep.
7
,
3205
(
2017
).
36.
X.-M.
Li
,
M.-H.
Bi
,
L.
Cui
,
Y.-Z.
Zhou
,
X.-W.
Du
,
S.-Z.
Qiao
, and
J.
Yand
,
Adv. Func. Mater.
27
,
1605703
(
2017
).
37.
V. A.
Fedotov
,
N.
Papasimakis
,
E.
Plum
,
A.
Bitzer
,
M.
Walther
,
P.
Kuo
,
D. P.
Tsai
, and
N. I.
Zheludev
,
Phys. Rev. Lett.
104
,
223901
(
2010
).
38.
C.
Yan
and
O. J. F.
Martin
,
ACS Nano
8
,
11860
(
2014
).
39.
Y.
Moritake
,
Y.
Kanamori
, and
K.
Hane
,
Appl. Phys. Lett.
107
,
211108
(
2015
).
40.
M.
Wenclawiak
,
K.
Unterrainer
, and
J.
Darmo
,
Appl. Phys. Lett.
110
,
261101
(
2017
).
41.
C. L. G.
Alzar
,
M. A. G.
Martinez
, and
P.
Nussenzveig
,
Am. J. Phys.
70
,
37
(
2002
).
42.
S.
Zhang
,
D. A.
Genov
,
Y.
Wang
,
M.
Liu
, and
X.
Zhang
,
Phys. Rev. Lett.
101
,
047401
(
2008
).
43.
N.
Verellen
,
Y.
Sonnefraud
,
H.
Sobhani
,
F.
Hao
,
V. V.
Moshchalkov
,
P. V.
Dorpe
,
P.
Nordlander
, and
S. A.
Maier
,
Nano Lett.
9
,
1663
(
2009
).
44.
N.
Liu
,
L.
Langguth
,
T.
Weiss
,
J.
Kastel
,
M.
Fleischhauer
,
T.
Pfau
, and
H.
Giessen
,
Nat. Mater.
8
,
758
(
2009
).
45.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
46.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons, Inc
,
1999
).

Supplementary Material

You do not currently have access to this content.