Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.

1.
S. V.
Makarov
,
A. S.
Zalogina
,
M.
Tajik
,
D. A.
Zuev
,
M. V.
Rybin
,
A. A.
Kuchmizhak
,
S.
Juodkazis
, and
Y.
Kivshar
,
Laser Photonics Rev.
11
,
1700108
(
2017
).
2.
U.
Zywietz
,
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
,
Nat. Commun.
5
,
3402
(
2014
).
3.
X.
Zhu
,
W.
Yan
,
U.
Levy
,
N. A.
Mortensen
, and
A.
Kristensen
,
Sci. Adv.
3
,
e1602487
(
2017
).
4.
A.
Kuchmizhak
,
O.
Vitrik
,
Y.
Kulchin
,
D.
Storozhenko
,
A.
Mayor
,
A.
Mirochnik
,
S.
Makarov
,
V.
Milichko
,
S.
Kudryashov
,
V.
Zhakhovsky
, and
N.
Inogamov
,
Nanoscale
8
,
12352
(
2016
).
5.
S. V.
Makarov
,
V. A.
Milichko
,
I. S.
Mukhin
,
I. I.
Shishkin
,
D. A.
Zuev
,
A. M.
Mozharov
,
A. E.
Krasnok
, and
P. A.
Belov
,
Laser Photonics Rev.
10
,
91
(
2016
).
6.
D. A.
Zuev
,
S. V.
Makarov
,
I. S.
Mukhin
,
V. A.
Milichko
,
S. V.
Starikov
,
I. A.
Morozov
,
I. I.
Shishkin
,
A. E.
Krasnok
, and
P. A.
Belov
,
Adv. Mater.
28
,
3087
(
2016
).
7.
A.
Kristensen
,
J. K.
Yang
,
S. I.
Bozhevolnyi
,
S.
Link
,
P.
Nordlander
,
N. J.
Halas
, and
N. A.
Mortensen
,
Nat. Rev. Mater.
2
,
16088
(
2016
).
8.
X.
Zhu
,
C.
Vannahme
,
E.
Højlund-Nielsen
,
N. A.
Mortensen
, and
A.
Kristensen
,
Nat. Nanotechnol.
11
,
325
(
2016
).
9.
A. I.
Kuznetsov
,
A. B.
Evlyukhin
,
M. R.
Gonçalves
,
C.
Reinhardt
,
A.
Koroleva
,
M. L.
Arnedillo
,
R.
Kiyan
,
O.
Marti
, and
B. N.
Chichkov
,
ACS Nano
5
,
4843
(
2011
).
10.
H.
Takahashi
,
T.
Niidome
,
A.
Nariai
,
Y.
Niidome
, and
S.
Yamada
,
Nanotechnology
17
,
4431
(
2006
).
11.
M. A.
Gubko
,
W.
Husinsky
,
A. A.
Ionin
,
S. I.
Kudryashov
,
S. V.
Makarov
,
C. R.
Nathala
,
A. A.
Rudenko
,
L. V.
Seleznev
,
D. V.
Sinitsyn
, and
I. V.
Treshin
,
Laser Phys. Lett.
11
,
065301
(
2014
).
12.
J.
Christofferson
,
K.
Maize
,
Y.
Ezzahri
,
J.
Shabani
,
X.
Wang
, and
A.
Shakouri
,
J. Electron. Packaging
130
,
041101
(
2008
).
13.
S.
Sadat
,
A.
Tan
,
Y. J.
Chua
, and
P.
Reddy
,
Nano Lett.
10
,
2613
(
2010
).
14.
T.
Brintlinger
,
Y.
Qi
,
K. H.
Baloch
,
D.
Goldhaber-Gordon
, and
J.
Cumings
,
Nano Lett.
8
,
582
(
2008
).
15.
M.
Balkanski
,
R.
Wallis
, and
E.
Haro
,
Phys. Rev. B
28
,
1928
(
1983
).
16.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Lukyanchuk
,
Science
354
,
aag2472
(
2016
).
17.
P. A.
Dmitriev
,
D. G.
Baranov
,
V. A.
Milichko
,
S. V.
Makarov
,
I. S.
Mukhin
,
A. K.
Samusev
,
A. E.
Krasnok
,
P. A.
Belov
, and
Y. S.
Kivshar
,
Nanoscale
8
,
9721
(
2016
).
18.
S.
Makarov
,
S.
Kudryashov
,
I.
Mukhin
,
A.
Mozharov
,
V.
Milichko
,
A.
Krasnok
, and
P.
Belov
,
Nano Lett.
15
,
6187
(
2015
).
19.
Y.
Yang
,
W.
Wang
,
A.
Boulesbaa
,
I. I.
Kravchenko
,
D. P.
Briggs
,
A.
Puretzky
,
D.
Geohegan
, and
J.
Valentine
,
Nano Lett.
15
,
7388
(
2015
).
20.
M. R.
Shcherbakov
,
D. N.
Neshev
,
B.
Hopkins
,
A. S.
Shorokhov
,
I.
Staude
,
E. V.
Melik-Gaykazyan
,
M.
Decker
,
A. A.
Ezhov
,
A. E.
Miroshnichenko
,
I.
Brener
 et al,
Nano Lett.
14
,
6488
(
2014
).
21.
S. V.
Makarov
,
M. I.
Petrov
,
U.
Zywietz
,
V.
Milichko
,
D.
Zuev
,
N.
Lopanitsyna
,
A.
Kuksin
,
I.
Mukhin
,
G.
Zograf
,
E.
Ubyivovk
 et al,
Nano Lett.
17
,
3047
(
2017
).
22.
T.
Lewi
,
H. A.
Evans
,
N. A.
Butakov
, and
J. A.
Schuller
,
Nano Lett.
17
,
3940
(
2017
).
23.
M.
Rahmani
,
L.
Xu
,
A. E.
Miroshnichenko
,
A.
Komar
,
R.
Camacho-Morales
,
H.
Chen
,
Y.
Zárate
,
S.
Kruk
,
G.
Zhang
,
D. N.
Neshev
, and
Y. S.
Kivshar
,
Adv. Funct. Mater.
27
,
1700580
(
2017
).
24.
K.
Nakahama
,
H.
Kawaguchi
, and
K.
Fujimoto
,
Langmuir
16
,
7882
(
2000
).
25.
A.
Sinitskii
,
S.
Neumeier
,
J.
Nelles
,
M.
Fischler
, and
U.
Simon
,
Nanotechnology
18
,
305307
(
2007
).
26.
The signal measured from smooth crystalline Si surface was used as a background signal in this case.
27.
Supporting FDTD modeling with a commercial solver (Lumerical Solutions) were used to calculate scattering spectra from the isolated Si resonators on the semi-infinite Si substrate as well as provide the corresponding H-field distribution. Total-field scattered-field source was used to irradiate normally the Si resonator. The backward scattering signal was collected with a monitor adjusted to fit the numerical aperture of the collection lens used in experiments. Perfectly matched layers were used as the boundary conditions in z-direction, while in x and y directions periodic boundary conditions were applied. The elementary cell size was fixed at 1 × 1 × 1 nm3. Dielectric function of Si was modelled using a build-in fit to data collected by Palik.
28.
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
,
Phys. Rev. B
84
,
235429
(
2011
).
29.
N.
Butakov
and
J.
Schuller
,
Sci. Rep.
6
,
38487
(
2016
).
30.
H.
Burke
and
I.
Herman
,
Phys. Rev. B
48
,
15016
(
1993
).
31.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 4th ed. (
Pergamon Press
,
1970
).
32.
Both exposure (accumulation) times were found to provide same shift of the c-Si Raman band versus incident energy. Meanwhile, the series of spectra accumulated during 5 seconds is less noisy, and is chosen for better representation and more precise temperature calibration.
33.
G. P.
Zograf
,
M. I.
Petrov
,
D. A.
Zuev
,
P. A.
Dmitriev
,
V. A.
Milichko
,
S. V.
Makarov
, and
P. A.
Belov
,
Nano Lett.
17
,
2945
(
2017
).
You do not currently have access to this content.