We propose and experimentally demonstrate a scheme to simulate the interaction between a two-level system and a classical light field. Under the transversal driving of two microwave tones, the effective Hamiltonian in an appropriate rotating frame is identical to that of the general semi-classical Rabi model. We experimentally realize this Hamiltonian with a superconducting transmon qubit. By tuning the strength, phase, and frequency of the two microwave driving fields, we simulate the quantum dynamics from the weak to extremely strong driving regime. Under these conditions, we observe that, as a function of increased Rabi drive strength, the qubit evolution gradually deviates from the normal sinusoidal Rabi oscillation, in accordance with the predictions of the general semi-classical Rabi model far beyond the weak driving limit. Our scheme provides an effective approach to investigate the extremely strong interaction between a two-level system and a classical light field. Such strong interactions are usually inaccessible in experiments.

1.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
,
G.
Grynberg
, and
P.
Thickstun
,
Atom-Photon Interactions: Basic Processes and Applications
(
Wiley Online Library
,
1992
).
3.
L. M. K.
Vandersypen
and
I. L.
Chuang
,
Rev. Mod. Phys.
76
,
1037
(
2005
).
4.
S.
Haroche
and
J. M.
Raimond
,
Exploring the Quantum: Atoms, Cavities, and Photons
(
Oxford University Press
,
2006
).
5.
A.
Blais
,
J.
Gambetta
,
A.
Wallraff
,
D. I.
Schuster
,
S. M.
Girvin
,
M. H.
Devoret
, and
R. J.
Schoelkopf
,
Phys. Rev. A
75
,
032329
(
2007
).
6.
J. Q.
You
and
F.
Nori
,
Phys. Rev. B
68
,
064509
(
2003
).
7.
D.
Braak
,
Q. H.
Chen
,
M. T.
Batchelor
, and
E.
Solano
,
J. Phys. A: Math. Theor.
49
,
300301
(
2016
).
8.
E. T.
Jaynes
and
F. W.
Cummings
,
Proc. IEEE
51
,
89
(
1963
).
9.
M.
Tavis
and
F. W.
Cummings
,
Phys. Rev.
170
,
379
(
1968
).
10.
F.
Bloch
and
A.
Siegert
,
Phys. Rev.
57
,
522
(
1940
).
11.
X.
Cao
,
J. Q.
You
,
H.
Zheng
, and
F.
Nori
,
New J. Phys.
13
,
073002
(
2011
).
12.
S.
Ashhab
and
F.
Nori
,
Phys. Rev. A
81
,
042311
(
2010
).
13.
D.
Zueco
,
G. M.
Reuther
,
S.
Kohler
, and
P.
Hänggi
,
Phys. Rev. A
80
,
033846
(
2009
).
14.
Q. T.
Xie
,
S.
Cui
,
J. P.
Cao
,
L.
Amico
, and
H.
Fan
,
Phys. Rev. X
4
,
021046
(
2014
).
15.
P.
Forn-Díaz
,
J.
Lisenfeld
,
D.
Marcos
,
J. J.
García-Ripoll
,
E.
Solano
,
C. J. P. M.
Harmans
, and
J. E.
Mooij
,
Phys. Rev. Lett.
105
,
237001
(
2010
).
16.
T.
Niemczyk
,
F.
Deppe
,
H.
Huebl
,
E. P.
Menzel
,
F.
Hocke
,
M. J.
Schwarz
,
J. J.
García-Ripoll
,
D.
Zueco
,
T.
Hümmer
,
E.
Solano
 et al,
Nat. Phys.
6
,
772
(
2010
).
17.
A.
Fedorov
,
A. K.
Feofanov
,
P.
Macha
,
P.
Forn-Díaz
,
C. J. P. M.
Harmans
, and
J. E.
Mooij
,
Phys. Rev. Lett.
105
,
060503
(
2010
).
18.
Y.
Todorov
,
A. M.
Andrews
,
R.
Colombelli
,
S.
De Liberato
,
C.
Ciuti
,
P.
Klang
,
G.
Strasser
, and
C.
Sirtori
,
Phys. Rev. Lett.
105
,
196402
(
2010
).
19.
A. A.
Anappara
,
S.
De Liberato
,
A.
Tredicucci
,
C.
Ciuti
,
G.
Biasiol
,
L.
Sorba
, and
F.
Beltram
,
Phys. Rev. B
79
,
201303
(
2009
).
20.
F.
Yoshihara
,
T.
Fuse
,
S.
Ashhab
,
K.
Kakuyanagi
,
S.
Saito
, and
K.
Semba
,
Phys. Rev. A
95
,
053824
(
2017
).
21.
D.
Ballester
,
G.
Romero
,
J. J.
García-Ripoll
,
F.
Deppe
, and
E.
Solano
,
Phys. Rev. X
2
,
021007
(
2012
).
22.
A. L.
Grimsmo
and
S.
Parkins
,
Phys. Rev. A
87
,
033814
(
2013
).
23.
J. S.
Pedernales
,
I.
Lizuain
,
S.
Felicetti
,
G.
Romero
,
L.
Lamata
, and
E.
Solano
,
Sci. Rep.
5
,
15472
(
2015
).
24.
N. K.
Langford
,
R.
Sagastizabal
,
M.
Kounalakis
,
C.
Dickel
,
A.
Bruno
,
F.
Luthi
,
D. J.
Thoen
,
A.
Endo
, and
L.
DiCarlo
,
Nat. Commun.
8
,
1715
(
2017
).
25.
S.
Fedortchenko
,
S.
Felicetti
,
D.
Marković
,
S.
Jezouin
,
A.
Keller
,
T.
Coudreau
,
B.
Huard
, and
P.
Milman
,
Phys. Rev. A
95
,
042313
(
2017
).
26.
R.
Puebla
,
M. J.
Hwang
,
J.
Casanova
, and
M. B.
Plenio
,
Phys. Rev. A
95
,
063844
(
2017
).
27.
J.
Braumüller
,
M.
Marthaler
,
A.
Schneider
,
A.
Stehli
,
H.
Rotzinger
,
M.
Weides
, and
A. V.
Ustinov
,
Nat. Commun.
8
,
779
(
2017
).
28.
F.
Yoshihara
,
T.
Fuse
,
S.
Ashhab
,
K.
Kakuyanagi
,
S.
Saito
, and
K.
Semba
,
Nat. Phys.
13
,
44
(
2017
).
29.
P.
Forn-Díaz
,
J. J.
García-Ripoll
,
B.
Peropadre
,
J.-L.
Orgiazzi
,
M. A.
Yurtalan
,
R.
Belyansky
,
C. M.
Wilson
, and
A.
Lupascu
,
Nat. Phys.
13
,
39
(
2017
).
30.
G. D.
Fuchs
,
V. V.
Dobrovitski
,
D. M.
Toyli
,
F. J.
Heremans
, and
D. D.
Awschalom
,
Science
326
,
1520
(
2009
).
31.
A.
Laucht
,
S.
Simmons
,
R.
Kalra
,
G.
Tosi
,
J. P.
Dehollain
,
J. T.
Muhonen
,
S.
Freer
,
F. E.
Hudson
,
K. M.
Itoh
,
D. N.
Jamieson
 et al,
Phys. Rev. B
94
,
161302
(
2016
).
32.
K. R. K.
Rao
and
D.
Suter
,
Phys. Rev. A
95
,
053804
(
2017
).
33.
J.
Tuorila
,
M.
Silveri
,
M.
Sillanpää
,
E.
Thuneberg
,
Y.
Makhlin
, and
P.
Hakonen
,
Phys. Rev. Lett.
105
,
257003
(
2010
).
34.
C.
Deng
,
J. L.
Orgiazzi
,
F.
Shen
,
S.
Ashhab
, and
A.
Lupascu
,
Phys. Rev. Lett.
115
,
133601
(
2015
).
35.
J.
Casanova
,
G.
Romero
,
I.
Lizuain
,
J. J.
García-Ripoll
, and
E.
Solano
,
Phys. Rev. Lett.
105
,
263603
(
2010
).
36.
Z.
,
Y.
Yan
,
H. S.
Goan
, and
H.
Zheng
,
Phys. Rev. A
93
,
033803
(
2016
).
37.
W. D.
Oliver
,
Y.
Yu
,
J. C.
Lee
,
K. K.
Berggren
,
L. S.
Levitov
, and
T. P.
Orlando
,
Science
310
,
1653
(
2005
).
38.
S.
Ashhab
,
J. R.
Johansson
,
A. M.
Zagoskin
, and
F.
Nori
,
Phys. Rev. A
75
,
063414
(
2007
).
39.
X.
Tan
,
Y.
Zhao
,
Q.
Liu
,
G.
Xue
,
H.
Yu
,
Z. D.
Wang
, and
Y.
Yu
,
npj Quantum Mater.
2
,
60
(
2017
).
40.
P.
London
,
P.
Balasubramanian
,
B.
Naydenov
,
L. P.
McGuinness
, and
F.
Jelezko
,
Phys. Rev. A
90
,
012302
(
2014
).
41.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
184
,
1234
(
2013
);
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, preprint arXiv:1211.6518.

Supplementary Material

You do not currently have access to this content.