We experimentally realize a sophisticated structure geometry for reliable magnetic domain wall-based multi-turn-counting sensor devices, which we term closed-loop devices that can sense millions of turns. The concept relies on the reliable propagation of domain walls through a cross-shaped intersection of magnetic conduits, allowing for the intertwining of loops of the sensor device. As a key step to reach the necessary reliability of the operation, we develop a combination of tilted wires called the syphon structure at the entrances of the cross. We measure the control and reliability of the domain wall propagation individually for cross-shaped intersections, the syphon geometries, and finally combinations of the two for various field configurations (strengths and angles). The various measured syphon geometries yield a dependence of the domain wall propagation on the shape that we explain by the effectively acting transverse and longitudinal external applied magnetic fields. The combination of both elements yields a behaviour that cannot be explained by a simple superposition of the individual different maximum field operation values. We identify as an additional process the nucleation of domain walls in the cross, which then allows us to fully gauge the operational parameters. Finally, we demonstrate that by tuning the central dimensions of the cross and choosing the optimum angle for the syphon structure, reliable sensor operation is achieved, which paves the way for disruptive multi-turn sensor devices.

1.
2.
R.
Spain
and
M.
Marino
,
IEEE Trans. Magn.
6
,
451
(
1970
).
3.
R. D.
McMichael
and
M. J.
Donahue
,
IEEE Trans. Magn.
33
,
4167
(
1997
).
4.
M.
Kläui
,
J. Phys.: Condens. Matter.
20
,
313001
(
2008
).
5.
D.
Allwood
,
G.
Xiong
,
M.
Cooke
,
C.
Faulkner
,
D.
Atkinson
,
N.
Vernier
, and
R.
Cowburn
,
Science
296
,
2003
(
2002
).
6.
A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
,
Science
309
,
1688
(
2005
).
7.
J.-O.
Klein
,
E.
Belhaire
,
C.
Chappert
,
R.
Cowburn
,
D.
Read
, and
D.
Petit
,
Int. J. Electron.
95
,
249
(
2008
).
8.
K.
Omari
and
T.
Hayward
,
Phys. Rev. Appl.
2
,
044001
(
2014
).
9.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
,
Science
320
,
190
(
2008
).
10.
M.
Donolato
,
P.
Vavassori
,
M.
Gobbi
,
M.
Deryabina
,
M. F.
Hansen
,
V.
Metlushko
,
B.
Ilic
,
M.
Cantoni
,
D.
Petti
,
S.
Brivio
 et al,
Adv. Mater.
22
,
2706
(
2010
).
11.
M.
Diegel
,
R.
Mattheis
, and
E.
Halder
,
IEEE Trans. Magn.
40
,
2655
(
2004
).
12.
M.
Diegel
,
R.
Mattheis
, and
E.
Halder
,
Sens. Lett.
5
,
118
(
2007
).
13.
M.
Diegel
,
S.
Glathe
,
R.
Mattheis
,
M.
Scherzinger
, and
E.
Halder
,
IEEE Trans. Magn.
45
,
3792
(
2009
).
14.
R.
Mattheis
,
S.
Glathe
,
M.
Diegel
, and
U.
Hübner
,
J. Appl. Phys.
111
,
113920
(
2012
).
15.
B.
Borie
,
M.
Voto
,
L.
Lopez-Diaz
,
H.
Grimm
,
M.
Diegel
,
M.
Kläui
, and
R.
Mattheis
,
Phys. Rev. Appl.
8
,
044004
(
2017
).
16.
B.
Borie
,
A.
Kehlberger
,
J.
Wahrhusen
,
H.
Grimm
, and
M.
Kläui
,
Phys. Rev. Appl.
8
,
024017
(
2017
).
17.
R.
Mattheis
, “
Magnetic revolution counter
,” European patent EP 2191237 B1 (
2014
).
18.
E.
Lewis
,
D.
Petit
,
A.-V.
Jausovec
,
L.
O'Brien
,
D.
Read
,
H.
Zeng
, and
R. P.
Cowburn
,
Phys. Rev. Lett.
102
,
057209
(
2009
).
19.
A.
Pushp
,
T.
Phung
,
C.
Rettner
,
B. P.
Hughes
,
S.-H.
Yang
,
L.
Thomas
, and
S. S. P.
Parkin
,
Nat. Phys.
9
,
505
(
2013
).
20.
D.
Burn
,
M.
Chadha
,
S.
Walton
, and
W.
Branford
,
Phys. Rev. B
90
,
144414
(
2014
).
21.
P.
Sethi
,
C.
Murapaka
,
S.
Goolaup
,
Y.
Chen
,
S.
Leong
, and
W.
Lew
,
Sci. Rep.
6
,
19027
(
2016
).
22.
D.
Heinze
,
B.
Borie
,
H.
Grimm
,
J.
Wahrhusen
, and
M.
Kläui
, in
J. Phys.: Conf. Ser.
903
,
012053
(
2017
).
You do not currently have access to this content.